

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

Neuroscience and Education: A Systematic Review of Brain-Based Learning Theories and Their Influence on Teaching Methods

Jawad Parayangattu

Research Scholar

Department of Education, North East Christian University

Dr. Sarika Goel,

Professor

Department of Education, North East Christian University

Abstract

In the last few decades, we've seen some exciting developments in cognitive neuroscience that have really shaped how we think about education. This has led to a fascinating blend of neuroscience and education. In this review paper, we take a close look at brain-based learning theories and how they impact teaching methods. We'll explore how insights from neuroscience can enhance instructional design, boost student engagement, and improve learning outcomes. By diving into various empirical studies, theoretical models, and meta-analyses from 2000 to 2024, we gather evidence on key topics like neuroplasticity, information processing, cognitive load, executive functions, emotional regulation, and social-emotional learning. The paper also examines how these scientific principles can be applied in the classroom through techniques like multisensory instruction, metacognitive scaffolding, supportive learning environments, and student-centered teaching. Additionally, we discuss some of the hurdles that come with applying neuroscience in education, such as the ongoing spread of neuromyths and disconnect between lab research and real-world teaching. Our findings suggest that when we base our teaching strategies on solid scientific principles, brain-based learning can really enhance teaching effectiveness, student engagement, academic success, and overall learner development. We wrap up by discussing the implications for educational practice, teacher training, and policy, while also pointing out some exciting avenues for future research in neuroscience-informed teaching.

Keywords: Neuroscience and Education; Brain-Based Learning; Teaching Methods; Cognitive Neuroscience; Student Engagement; Neuroplasticity; Executive Function

Introduction

Traditionally, education leans on ideas from psychology, philosophy, and sociology to explain learning. But, with all the fast progress in brain science over the last few decades, we're getting fresh looks at the biological and brain roots of how we learn, remember, feel, and pay attention. Because of this, people are getting more interested in mixing brain science and education to come up with teaching methods that match how our brains naturally learn (Ansari & Coch, 2006; Tokuhama-Espinosa, 2011).

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com ISSN: 2250-3552

Brain science shows that learning isn't just sitting there passively; it's an active thing that depends on what we experience. Our brains can rewire themselves based on experiences and teaching (Draganski et al., 2004; Kolb & Gibb, 2011). This goes against old-school, teacher-centered ways that focus on memorization and one-size-fits-all lessons. Instead, it backs learning approaches that consider each student's different thinking styles, motivation, and emotional control.

Brain-based learning is a teaching idea that tries to turn brain science finds into classroom action. It stresses things like getting students emotionally involved, using multiple senses when teaching, providing context that makes sense, thinking about thinking (metacognition), and interacting with others as key for good learning (Caine & Caine, 2014; Sousa, 2017). Studies on emotions and the brain have also made it clear that feelings are key for attention, memory, and making choices, which makes emotionally supportive classrooms super important for doing well in school (Immordino-Yang & Damasio, 2007).

Also, ideas about how we process info and how much our brains can handle help us get how lesson planning affects learning speed. Research hints that teaching styles that cut down on extra brain strain and help working memory improve understanding and long-term memory (Sweller, Ayres, & Kalyuga, 2011). Likewise, studies on executive functions show that metacognition, self-control, and acting with a goal in mind are crucial when learning, especially in the teen years when the front part of the brain is still growing (Diamond, 2013).

Though there's lots of buzz around education that uses brain science, some worry that people might misinterpret the finds or spread neuromyths in schools (Dekker et al., 2012). This means we need solid reviews that sort out what's actually supported by data from stuff that's too simple or not backed up.

So, this paper will look at what's out there right now on brain-based learning ideas and see how they've impacted teaching styles. By really digging into research and ideas, it aims to give teachers, researchers, and leaders a clear view of how brain science can smartly inform teaching and help make teaching better and improve how students learn.

2. The Basics of Brain-Based Learning

Brain-based learning comes from mixing finds from brain science, psychology, and education research. It wants to match teaching methods with how our brains work. Basically, it sees learning as something biological that's affected by brain growth, experience, feelings, and hanging out with others (Tokuhama-Espinosa, 2011). Unlike old teaching styles that focus on spitting out info, brain-based learning focuses on making learning spaces that help the brain work well and adapt.

A key idea behind brain-based learning is how the brain can rewire itself in response to learning and experience. Studies have shown that learning experiences can lead to real changes in brain

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

connections and the amount of grey matter (Draganski et al., 2004; Kolb & Gibb, 2011). This challenges the idea that our intelligence is set in stone and supports teaching approaches that stress growth, practice, and feedback.

One basic idea comes from how the brain processes info: encoding, storing, and retrieving. Our short-term memory has limits that affect learning. If teaching overloads your brain, you won't understand or remember things as well. So, good teaching breaks info into smaller bits, builds on what you already know, and organizes things in a way that makes sense. It makes processing easier. Also, how much mental effort something takes matters. There's effort that's essential, effort that's just distracting, and effort that helps you build knowledge. Good teaching cuts down on the distractions and helps you build those mental connections. This actually affects how you plan lessons, how fast you teach, and how you test people.

Emotions really matter for learning, too. Your feelings and your thinking are tied together. If you care about something, you pay more attention, remember it better, and make better choices. So, creating a safe, relevant, and friendly learning place is super important.

All together, these ideas make brain-based learning a way to teach that's based on science. It looks at how thinking, feeling, and social stuff all work together. It's a good base for changing how we teach.

3. How Brain Science Affects Teaching

A few main ideas show how learning happens in your brain. These ideas link brain research to what happens in the classroom, and they help us make better teaching plans.

The idea that your brain can change is huge! Learning changes how your brain looks and works all your life. This means teaching should involve repeating things, getting feedback, and having just the right amount of challenge. This strengthens the pathways in your brain. In class, this looks like checking how people are doing, letting them master things at their own pace, and teaching in different ways for different people.

Also, things like remembering stuff, controlling impulses, and being flexible are a big deal for learning. These skills are linked to the front part of your brain. Teaching that includes planning, asking questions to make you think, and checking your progress can strengthen these skills, especially in teens.

Emotions are key! Feelings change how your brain processes things and forms memories. Stress can hurt learning by messing with your attention, but good feelings help you pay attention. So, creating a place that feels good, gives you some control, and connects to real life is a much better way to learn.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

How we interact with others matters. Brain systems for feeling empathy and copying others play a part in how we learn together. Teaching strategies that involve group work, discussions, and feedback from classmates help in school and with social skills.

4. How Brain-Based Learning Can Be Used in Class

Turning neuroscience ideas into classroom actions has made ways of teaching called brain-based learning. These ways focus on planning lessons that match how students pay attention to, handle, save, and remember what they learn. Instead of saying there's only one way to teach, brain-based learning is more of a guide for teachers when they're choosing how to teach.

One big use of brain-based learning is teaching that uses many senses. This gets more senses working to help the brain make stronger and remember better. Studies say that learning that involves seeing, hearing, and moving helps students understand and remember longer because it gets more of their brain working. In class, this means using things like charts, acting things out, objects students can touch, fake situations, and computers.

Another important use is teaching that gets students emotionally involved. Brain science about emotions has shown that emotions affect how well students pay attention and remember because the emotional part of the brain works with the thinking parts. Teachers who tie what they're teaching to real life, make students curious, and have good relationships with their students make good emotional environments that help students learn.

Brain-based learning also stresses giving help when needed and giving chances to practice to help with memory limits. Teaching ways like breaking info into chunks, giving outlines first, and giving practice with help lower the brain's work and help students form ideas. These ways are really good when teaching hard or abstract ideas.

Another key use in teaching is pushing students to think about their own thinking and learn on their own. Teaching students to think about how they're thinking, watch how they're doing, and change how they learn helps their brain functions and makes them do better in school. Brain-based classrooms then add things like asking students to think, giving feedback along the way, and chances for students to rate themselves.

All in all, using brain-based learning in teaching pushes for active teaching that puts students first and helps them think well, get emotionally involved, and understand deeply.

5. How Brain-Based Learning Helps Students Be Involved and Do Well in School

More and more studies show that brain-based learning ways help students be involved and do better in school. Involvement, which includes how students act, feel, and think, is a key thing between how teachers teach and how students learn. Teaching that uses brain science touches on all three of these things by matching teaching ways with what students need in their thinking and feelings.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

Studies have often shown that classrooms that use brain-based ways have more students acting involved, like joining in more, paying attention longer, and not getting off-task as much. Active learning jobs, working together, and teaching with problems get the brain areas tied to wanting to do things and working towards goals going.

When it comes to feeling involved, brain-based learning grows good feelings about learning by lowering stress and worry and growing inner drive. Studies show that long-term stress hurts how the brain's memory center works, while emotional environments grow good learning settings. Teachers who put emotional safety and making things relevant first help students stay open to learning in their minds.

Cognitive engagement is strengthened through instructional practices that challenge students appropriately while supporting executive functioning. Tasks that require analysis, reflection, and application activate higher-order cognitive processes and promote deeper learning (Diamond, 2013). Such engagement has been linked to improved academic achievement and transfer of learning.

Meta-analytic and experimental studies suggest that when brain-based strategies are systematically implemented, students demonstrate significant gains in academic performance, particularly in conceptual understanding and retention (Hattie, 2009; Sousa, 2017). These outcomes reinforce the view that teaching methods grounded in neuroscience can enhance both immediate learning outcomes and long-term educational development.

In summary, brain-based learning plays a crucial role in fostering sustained student engagement and improving academic achievement by addressing the cognitive, emotional, and motivational dimensions of learning.

6. Challenges, Critiques, and Neuromyths in Brain-Based Education

Despite the growing popularity of brain-based learning, its application in educational practice has been accompanied by significant challenges and criticisms. One of the most prominent concerns is the misinterpretation and oversimplification of neuroscientific findings, leading to the widespread acceptance of neuromyths in education. Neuromyths such as “left-brain/right-brain learners,” “learning styles,” and the belief that individuals use only a small percentage of their brain persist despite a lack of empirical support (Dekker et al., 2012).

A key challenge lies in the translation gap between neuroscience research and classroom practice. Much neuroscientific research is conducted in controlled laboratory settings using specialised equipment, making direct application to complex classroom environments difficult (Ansari et al., 2017). As a result, educators may struggle to identify which findings are pedagogically relevant and how to implement them effectively.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

Another critique concerns the commercialisation of brain-based programmes, many of which claim neuroscientific legitimacy without rigorous empirical validation. Such programmes risk diverting educational resources towards interventions that lack scientific credibility and may undermine trust in neuroscience-informed education (Howard-Jones, 2014).

Additionally, the limited neuroscience literacy among teachers poses a challenge to effective implementation. Without adequate training, teachers may adopt fragmented or incorrect interpretations of brain research, leading to ineffective or inconsistent instructional practices. This highlights the need for critical engagement with research rather than unquestioned acceptance of neuroscience-based claims.

There are also methodological concerns within the research literature itself, including small sample sizes, inconsistent definitions of brain-based learning, and a reliance on correlational rather than causal evidence. These limitations call for cautious interpretation of findings and underscore the importance of interdisciplinary collaboration between neuroscientists, psychologists, and educators.

In summary, while brain-based learning holds promise, its effective application requires scientific rigour, critical evaluation, and systematic teacher education to avoid misconceptions and misuse.

7. Implications for Teaching Practice, Teacher Education, and Educational Policy

The synthesis of research on brain-based learning has important implications for teaching practice, teacher preparation, and educational policymaking. When grounded in scientifically validated principles, neuroscience-informed pedagogy can support more effective and equitable educational systems.

For classroom practice, the review suggests that teachers should adopt learner-centred instructional approaches that emphasise emotional engagement, active learning, scaffolding, and metacognitive development. Rather than applying neuroscience as a set of rigid techniques, teachers should use it as a conceptual framework to inform instructional decision-making (Tokuhama-Espinosa, 2011). In teacher education, both pre-service and in-service programmes should prioritise foundational neuroscience literacy. Teachers need a clear understanding of brain development, learning, and memory, as well as guidance on distinguishing evidence-based practices from neuromyths. Integrating neuroscience with pedagogy and psychology within teacher education curricula can foster reflective and informed practitioners (Darling-Hammond et al., 2020).

At the policy level, educational reforms should promote evidence-based innovation rather than prescriptive or commercially driven initiatives. Policymakers should support professional development, research-practice partnerships, and curriculum flexibility to enable the responsible integration of brain-based learning. Policies should also recognise the importance of social-emotional learning, well-being, and executive functioning as integral to academic success.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

When teacher challenge students the right way and help them with planning and focus, it really gets their brains working. Activities that make them think, reflect, and use what they know can help them learn better overall. This kind of engagement can lead to better grades and the ability to use what they've learned in new situations.

Studies suggest that using teaching strategies based on how the brain works can help students do better in school, especially when it comes to understanding ideas and remembering things. It shows that teaching methods based on brain science can help students both right away and in the long run.

Basically, learning about the brain can help keep students interested and improve their grades by taking into account how they think, feel, and what gets them going

Even though a lot of people are into using brain-based learning, it has its problems. One big one is that people often misunderstand the science, which leads to believing in brain myths. Things like left-brain/right-brain learners or that we only use a small part of our brains are still around, even though they're not really true.

One issue is that it's hard to take what's learned in science labs and use it in real classrooms. A lot of brain research is done in very controlled settings with special equipment, which doesn't really match what classrooms are like. So, teachers might have a hard time figuring out what research is useful and how to actually use it.

Another problem is that some companies sell brain-based programs that aren't really proven to work. These programs can waste money and make people doubt if brain science can really help education.

Also, not all teachers know a lot about the brain. If they don't have enough training, they might not understand the research correctly, which can lead to teaching that isn't very good or doesn't make sense. It's important for teachers to really understand the research instead of just blindly believing everything they hear about the brain.

Some research on this topic isn't great either. Some studies are small, don't define things well, and rely on simple trends instead of proving cause and consequence. This means we need to be careful about how we interpret the results and work together with scientists, mental experts, and teachers. So, while brain-based learning seems like a good idea, we need to be careful and make sure we're using good science and training teachers properly.

8. Usefulness for schools

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com ISSN: 2250-3552

Looking at the research on brain-based learning has some important things to tell us about teaching, training teachers, and making rules for schools. If we use science-backed ideas, we can make schools better and fairer for everyone.

For teachers, this means using teaching methods that focus on the student. Make sure they are emotionally invested, learning actively, getting the right support, and thinking about their own thinking. Instead of just following brain science like a set of instructions, teachers should use it as a way to help them make decisions about how to teach.

When it comes to training teachers, programs should focus on teaching them the basics of brain science. Teachers should understand how the brain grows, learns, and remembers things. They should also know how to tell what real science from what's a myth is. By mixing brain science with teaching methods and psychology, we can help teachers become thoughtful and well-informed.

When making education rules, politicians should push for new ideas that are based on proof, not just what someone is trying to sell. They should invest in training for teachers, partnerships between researchers and schools, and flexible lesson plans so that brain-based learning can be used responsibly. Rules should also recognize that things like social skills, feelings, and the ability to plan are all part of doing well in school.

10. Upcoming brain research in schools:

While research is starting to back up brain-based learning, there's still a lot we need to learn to make it better for classrooms. One thing we need is studies that last a long time and involve a lot of students to see how teaching methods affect them over time. This would help us see if things like engagement, planning skills, and grades stay improved as students grow and move through different levels of school.

Future research should also look at how brain-based learning can be used in specific subjects. A lot of what we know now is about general teaching ideas, but subjects like language, math, science, and art might need different ways of using brain science. Comparing these subjects could give us better teaching advice.

Another good step would be for scientists, psychologists, teachers, and lesson planners to work together. This can help connect what's learned in the lab to what happens in the classroom, making sure that research is helpful and realistic for schools.

New learning technology also gives us opportunities for future research. Online learning, personalized programs, and data analysis can help us teach in a way that fits how each student's brain works, while also collecting lots of information about learning. But, we need to be careful and make sure these new ideas are based on brain science, not just because they're new and exciting.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com ISSN: 2250-3552

Finally, studies should keep working on understanding brain myths and how well teachers understand brain science. We need to know how teachers understand and use brain research and find good ways to train them. Helping teachers understand brain science better will be key to growing brain-based education in a responsible way.

This paper looked at the ideas, uses, and proof behind brain-based learning and how it affects teaching. Using research from brain science, psychology, and education, the paper shows that learning is always changing and is shaped by how we think, feel, and interact with others, all of which comes from the brain.

The research suggests that when brain-based learning is based on science, it can make teaching better, keep students interested, improve grades, and help students grow as people. Teaching methods that focus on feelings, using multiple senses, support, thinking about thinking, and social interaction are often linked to good results in education.

At the same time, the paper makes it clear that it's important to be careful and responsible when using brain science in education. Problems like brain myths, misunderstanding research, and the gap between theory and practice mean we need to be careful and support it with teacher training and rules based on proof.

In closing, brain science and education should work together. When combined carefully, they can lead to teaching methods that are more quality, fair, and responsive to how students grow. Brain-based learning doesn't give simple answers but gives a strong way to rethink teaching so that it matches how students think, feel, and learn. Continued research and careful practice will be important for reaching the full potential of brain-informed education.

Important to consider is that the review shows that schools need to provide constant support. Without enough time, money, and training, even the best brain-based approaches might not work.

References

1. Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and neuroscience. *Trends in Cognitive Sciences*, 10(4), 146–151. <https://doi.org/10.1016/j.tics.2006.02.007>
2. Ansari, D., De Smedt, B., & Grabner, R. H. (2017). Neuroeducation—A critical overview of an emerging field. *Educational Researcher*, 46(7), 1–9. <https://doi.org/10.3102/0013189X17727608>
3. Baddeley, A. (2000). The episodic buffer: A new component of working memory? *Trends in Cognitive Sciences*, 4(11), 417–423. [https://doi.org/10.1016/S1364-6613\(00\)01538-2](https://doi.org/10.1016/S1364-6613(00)01538-2)
4. Caine, R. N., & Caine, G. (2014). *Natural learning for a connected world: Education, technology, and the human brain*. Teachers College Press.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal

Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

5. Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for educational practice of the science of learning and development. *Applied Developmental Science*, 24(2), 97–140. <https://doi.org/10.1080/10888691.2018.153779>
6. Dekker, S., Lee, N. C., Howard-Jones, P., & Jolles, J. (2012). Neuromyths in education: Prevalence and predictors of misconceptions among teachers. *Frontiers in Psychology*, 3, 429. <https://doi.org/10.3389/fpsyg.2012.00429>
7. Diamond, A. (2013). Executive functions. *Annual Review of Psychology*, 64, 135–168. <https://doi.org/10.1146/annurev-psych-113011-143750>
8. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. *Nature*, 427(6972), 311–312. <https://doi.org/10.1038/427311a>
9. Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept. *Review of Educational Research*, 74(1), 59–109. <https://doi.org/10.3102/00346543074001059>
10. Hattie, J. (2009). *Visible learning: A synthesis of over 800 meta-analyses relating to achievement*. Routledge.
11. Howard-Jones, P. A. (2014). Neuroscience and education: Myths and messages. *Nature Reviews Neuroscience*, 15(12), 817–824. <https://doi.org/10.1038/nrn3817>
12. Immordino-Yang, M. H., & Damasio, A. (2007). We feel, therefore we learn: The relevance of affective and social neuroscience to education. *Mind, Brain, and Education*, 1(1), 3–10. <https://doi.org/10.1111/j.1751-228X.2007.00004.x>
13. Immordino-Yang, M. H., Darling-Hammond, L., & Krone, C. (2019). Nurturing nature: How brain development is inherently social and emotional. *Educational Psychologist*, 54(3), 185–204. <https://doi.org/10.1080/00461520.2019.1633924>
14. Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. *Journal of the Canadian Academy of Child and Adolescent Psychiatry*, 20(4), 265–276.
15. Lieberman, M. D. (2013). *Social: Why our brains are wired to connect*. Oxford University Press.
16. McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex. *Journal of Neuroscience*, 33(45), 17624–17634. <https://doi.org/10.1523/JNEUROSCI.3028-13.2013>
17. Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. *Trends in Cognitive Sciences*, 12(11), 411–417. <https://doi.org/10.1016/j.tics.2008.07.006>
18. Sousa, D. A. (2017). *How the brain learns* (5th ed.). Corwin Press.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

19. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer. <https://doi.org/10.1007/978-1-4419-8126-4>
20. Tokuhama-Espinosa, T. (2011). Mind, brain, and education science: A comprehensive guide to the new brain-based teaching. W. W. Norton & Company.
21. Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. *Theory Into Practice*, 41(2), 64–70. <https://doi.org/10.1207/s15430421tip4102>