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Abstract 

In this paper, we attain a unique fixed point for contractive mappings in fuzzy metric spaces by 

employing a suitable control function and a contractive-type inequality. The obtained results 

generalize several existing fixed point theorems and ensure existence, uniqueness, and 

convergence of fixed points under weaker conditions. 
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1. Introduction And Preliminaries 

Known by every mathematician that the concept of fuzzy metric space (FMS)introduced , 

initiated and devolved by  zadeh (1965) after all namely  E l Naschie (2004),  Gupta et.al (2015), 

Grabeic (1988) and also some other result of literature such as Vasuki (1998) , Gregori and 

Sapena (2002), Gupta and Mani (2014a) and Gupta,et.al.(2015) , Banach (1922), George & 

Veeramani, (1994), Grabiec(1988), Gregori, Morillas & Sapena (2011), Vijayaraju & Sajath, 

(2009), Subrahmanyam, (1995), Karmosill, & Michalek (1975), Saini, Gupta, & Singh, (2007), 

Saini.et.al (2008), Schweizer & Sklar (1960). 

Again some other researcher such as Jain and Sayyed (2019), Gupta, Saini, Mani & Tripathi, 

(2015) , Gupta & Mani (2014b) also give some theory on control fuzzy metric space. 
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2. Main Results 

THEOREM 2.1   Let (X, M, *) be a complete fuzzy metric space and p : X → X be a mapping 

satisfying 

 M (px, py, kt) ≥  ξ { λ (x, y, t) }                                  --- (A) 

Where, 

 λ (x, y, t) = {M(x, y, t) +  M(x, px, t) +  M(y, py, t) +  
M(x,px,t)∗ M(y,py,t)

M(x,y,t)
}                         --- (A') 

 

for all x, y ∈ X, ξ ∈ϕ  and k ∈ (0, 1). Then p has a unique fixed point. 

  PROOF:    Let Construct a sequence {Xn} ∈ X such that  pxn = xn+1 for all n ∈ N, where x ∈ X be any  

         arbitrary point  in X. Claim:   {Xn} is a Cauchy sequence with   x = xn-1 and y = xn in equation    

          A, we get  

                 M (xn , xn+1 , kt) = M (pxn-1 , pxn , kt) ≥ , ξ { λ (xn-1 , xn , t) 

                  from equation A', we have 

          λ (xn−1, xn, t) 

=  {M (xn−1, xn, t) +  M (xn−1, pxn−1, t) +  M (xn, pxn, t)

+
M  (xn−1, pxn−1, t) +  M (xn, pxn, t)

M  (xn−1, xn, t)
}      

                                                                                                                                                       

= {M (xn−1, xn, t) +  M (xn−1, xn, t) +  M (xn, xn+1, t) +
 M  (xn−1, xn, t) +  M (xn, xn+1, t)

M  (xn−1, xn, t)
} 

=  2{ M (xn, xn+1, t) + M (xn−1, xn, t) } 

Now if M (xn, xn+1, t) ≤ M (xn−1, xn, t) then by above, 

M (xn, xn+1, kt) ≥ ξ {M (xn, xn+1, t)} > M (xn, xn+1, t)  

Hence, our claim follows immediately from previous obtained lemma , Now suppose  

       M (xn, xn+1, t) ≥ M (xn−1, xn, t), then again from ,  

M (xn, xn+1, kt) ≥ ξ {M (xn−1, xn, t)} > M (xn−1, xn, t)  
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Now by simple induction, for all n and t > 0, we get  

M (xn, xn+1, kt) ≥ M (x, x1 ,
𝑡

𝑘𝑛−1)                                                                              

Now for any positive integer r, we have 

M (xn, xn+r, t) ≥ M (xn, xn+1,
𝑡

𝑟
) *……….* M (xn+p−1, xn+p,

𝑡

𝑟
),  proceeding  

M (xn, xn+r, t) ≥ M (𝑥, x1,
𝑡

𝑟 𝑘𝑛
) *---.* M (𝑥, 𝑥,

𝑡

𝑟 𝑘𝑛
) 

Taking lim
𝑛→∞

 , we get lim
𝑛→∞

M (xn, xn+r, t) = 1                                                         

This implies {xn} is a Cauchy Sequence, therefore, there exists a point u ∈ X such that 

lim
𝑛→∞

xn =  𝑢. 

 

 

Claim: u is a fixed point of p. Consider 

M(u, pu, t) ≥ M(pxn, pu, t) * M(u, xn+1, t) ≥ ξ { λ (xn, 𝑢,
𝑡

2𝑘
)} * M(u, xn+1, t)                        ---(2.6) 

Again from Equation A',  

λ (xn, 𝑢,
𝑡

2𝑘
) = 

{𝑀 (xn, 𝑢,
𝑡

2𝑘
) +  𝑀 (xn, 𝑝xn,

𝑡

2𝑘
) + 𝑀 (𝑢, 𝑝𝑢,

𝑡

2𝑘
) +

 M (xn, 𝑝xn,
𝑡

2𝑘
) ∗ M (u, 𝑝u,

𝑡
2𝑘

)

 (xn, 𝑢,
𝑡

2𝑘
)

} 

Taking lim
𝑛→∞

, we get 

λ (𝑢, 𝑢,
𝑡

2𝑘
) = 

{𝑀 (𝑢, 𝑢,
𝑡

2𝑘
) +  𝑀 (𝑢, 𝑝𝑢,

𝑡

2𝑘
) +  𝑀 (𝑢, 𝑝𝑢,

𝑡

2𝑘
) +  

  M (𝑢, 𝑝𝑢,
𝑡

2𝑘
) ∗ M (u, 𝑝u,

𝑡
2𝑘

)

 (𝑢, 𝑢,
𝑡

2𝑘
)

} 

 

= {1 +   𝑀 (𝑢, 𝑝𝑢,
𝑡

2𝑘
) +  M (𝑢, 𝑝𝑢,

𝑡

2𝑘
) +  (M (u, 𝑝u,

𝑡

2𝑘
))

2

} 
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= 1 + 2 𝑀 (𝑢, 𝑝𝑢,
𝑡

2𝑘
) + (M (u, 𝑝u,

𝑡

2𝑘
))

2

 

By above equation , we get 

M (u, pu, t) ≥ ξ {𝑀 (𝑢, 𝑝𝑢,
𝑡

2𝑘
)} * M (xn+1, 𝑢, 𝑡) > M (𝑢, 𝑝𝑢,

𝑡

2𝑘
) * M (xn+1, 𝑢, 𝑡)             

Taking lim
𝑛→∞

  and using lemma of previous published papers reference  we get pu = u. 

UNIQUENESS: Now we show that u is a unique fixed point of p. Suppose not, then there exists 

a point z ∈ X such that pz = z. 

Consider 1 ≥ M (z, u, t) = M (pz, pu, t) ≥ ξ {𝜆 (z, u,
𝑡

𝑘
)}                                                       

Where  λ (𝑧, 𝑢,
𝑡

𝑘
) = 

{𝑀 (𝑧, 𝑢,
𝑡

𝑘
) +  𝑀 (𝑧, 𝑝𝑧,

𝑡

𝑘
) + 𝑀 (𝑢, 𝑝𝑢,

𝑡

𝑘
) +

  M (𝑧, 𝑝𝑧,
𝑡
𝑘

) ∗ M (u, 𝑝u,
𝑡
𝑘

)

𝑀 (𝑧, 𝑢,
𝑡
𝑘

)
} 

=   {𝑀 (𝑧, 𝑢,
𝑡

𝑘
) +  𝑀 (𝑧, 𝑧,

𝑡

𝑘
) + 𝑀 (𝑢, 𝑢,

𝑡

𝑘
) +  

  M (𝑧, 𝑧,
𝑡
𝑘

) ∗ M (u, u,
𝑡
𝑘

)

𝑀 (𝑧, 𝑢,
𝑡
𝑘

)
} 

This implies that either λ (𝑧, 𝑢,
𝑡

𝑘
) = 1  or  λ (𝑧, 𝑢,

𝑡

𝑘
) = M (𝑧, 𝑢,

𝑡

𝑘
)  

Using it in previous equation, we get z = u. 

Thus, u is a unique fixed point of p. This completes the proof of Theorem 2.1 

COROLLARY 2.1.     Let (X, M, *) be a complete fuzzy metric space and p :X → X be a 

mapping satisfying  

M (𝑝𝑥, 𝑝𝑦, 𝑘𝑡) ≥ λ (𝑥, 𝑦, 𝑡) 

where, 

  λ (𝑥, 𝑦, 𝑡) =  {𝑀 (𝑥, 𝑦, 𝑡) +  𝑀 (𝑥, 𝑝𝑥, 𝑡) +  𝑀(𝑦, 𝑝𝑦, 𝑡) +  
M(𝑥,𝑝𝑥,𝑡)∗M(y,𝑝𝑦,𝑡)

𝑀(𝑥,𝑦,𝑡)
} 

for all x, y ∈ X, and k ∈ (0, 1). Then p has a unique fixed point . The proof of the result follows 

immediately from Theorem 2.1 by taking ξ(t) = t. 
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3.Application. 

Theorem 3.1 

In this section, we give an application related to our result.  Let us define ψ : [0, ∞] → [0, ∞], as  

Ψ(t) = ∫ Ψ(t)dt
𝑡

0
  ∀ t > 0, be a non-decreasing and continuous function. Moreover, for each ϵ > 0, 

Ψ(t) > 0 and  Ψ(t) = 0 iff t = 0. 

Let (X, M, *) be a complete fuzzy metric space and p : X → X be a mapping satisfying 

∫ Ψ(t) dt
𝑀(𝑝𝑥,𝑝𝑦,𝑘𝑡)

0
  > ξ {∫ Ψ(t)  dt

𝜆 (𝑥,𝑦,𝑡)

0
} 

Where, 

λ (𝑥, 𝑦, 𝑡) =  

{𝑀(𝑥, 𝑦, 𝑡) +  𝑀(𝑥, 𝑝𝑥, 𝑡) +  𝑀(𝑦, 𝑝𝑦, 𝑡) +  
M(𝑥, 𝑝𝑥, 𝑡) ∗ M(y, 𝑝𝑦, 𝑡)

𝑀(𝑥, 𝑦, 𝑡)
} 

for all x, y ∈ X, ϕ ∈ Ψ, ξ ∈ ∅ and k ∈ (0, 1), Then p has a unique fixed point. 

Proof: By taking Ψ(t) = 1 and applying Theorem 3.1, we obtain the result. 

Conclusion 

This study establishes the existence and uniqueness of a fixed point in fuzzy metric spaces by 

formulating an appropriate contractive-type condition governed by a control function. The 

introduced framework relaxes classical contraction assumptions and accommodates a broader 

class of nonlinear mappings within fuzzy environments. By integrating control functions with 

fuzzy metrics, the convergence of iterative sequences toward the fixed point is ensured, 

enhancing the robustness of the results. The proposed theorem not only unifies and extends 

several known fixed point results in fuzzy metric spaces but also provides a flexible analytical 

tool. These findings have potential applications in decision theory, optimization, and fuzzy 

differential equations.  
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