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Abstract
In this paper, we attain a unique fixed point for contractive mappings in fuzzy metric spaces by
employing a suitable control function and a contractive-type inequality. The obtained results
generalize several existing fixed point theorems and ensure existence, uniqueness, and
convergence of fixed points under weaker conditions.
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1. Introduction And Preliminaries
Known by every mathematician that the concept of fuzzy metric space (FMS)introduced |,
initiated and devolved by zadeh (1965) after all namely E | Naschie (2004), Gupta et.al (2015),
Grabeic (1988) and also some other result of literature such as Vasuki (1998) , Gregori and
Sapena (2002), Gupta and Mani (2014a) and Gupta,et.al.(2015) , Banach (1922), George &
Veeramani, (1994), Grabiec(1988), Gregori, Morillas & Sapena (2011), Vijayaraju & Sajath,
(2009), Subrahmanyam, (1995), Karmosill, & Michalek (1975), Saini, Gupta, & Singh, (2007),
Saini.et.al (2008), Schweizer & Sklar (1960).
Again some other researcher such as Jain and Sayyed (2019), Gupta, Saini, Mani & Tripathi,
(2015) , Gupta & Mani (2014b) also give some theory on control fuzzy metric space.
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2. Main Results

THEOREM 2.1 Let (X, M, *) be a complete fuzzy metric space and p : X — X be a mapping
satisfying

M (pX: by, kt) > & { A (Xa Y, t) } T (A)
Where,

M(x,px,t)* M(y,py,t) '
M(x,y,t) } (A )

Ayt = {M(x,y, t) + M(x,px,t) + M(y,py,t) +
forall x,y € X, £ €d and k € (0, 1). Then p has a unique fixed point.
PROOF: Let Construct a sequence {Xn} € X such that px,= Xn+1 for all n € N, where x € X be any
arbitrary point in X. Claim: {Xn} is a Cauchy sequence with X = Xx.1 and y = X in equation
A, we get
M (Xn , Xn+1, kt) = M (pXn-1, PXn, kt) >, & { A (Xn-1, Xn , ¥)
from equation A', we have

>" (Xn—lr an t)

= {M (Xn—lixn: t) + M (Xn—li an—llt) + M (Xn' an't)

M (Xn—ll an—llt) + M (an an't)}
M (Xn—lﬂxn't)

M Xp_1,Xp, ) + M (X, Xpa1, t
:{M (Xn—lrxnit)‘l' M(Xn—l,Xn,t)-l- M(Xn’xn+1:t)+ ( n-1“n ) ( n’ 4n+1 )}

M (Xp-1,Xn, t)

= 2{M (Xp, Xn+1, 1) + M (Xp_1,Xp, 1) }

Now if M (Xp, Xp4+1, 1) <M (X,-1,Xp, ) then by above,

M (Xp, Xn4+1, Kt) = & {M (Xp, Xp11, )} > M (Xp, Xp41, )

Hence, our claim follows immediately from previous obtained lemma , Now suppose
M (X, Xp+1, ) =M (x,-1, Xy, £), then again from,

M (Xp, Xn+1, KO > & {M (Xp—1,Xp, D} > M (Xp_1,Xp, D)
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Now by simple induction, for all nand t > 0, we get

M (Xp, Xp41, kt) 2 M (x,%4 »%)

Now for any positive integer r, we have

M (Xp, Xp4rm ©) = M (Xp, xnﬂé) * *M (xn+p_1,xn+p,£), proceeding

M (Xp, Xp+ t) = M (x, xl,#) *-* M (%, x, #)

Taking 1111_r)r010 , We get rlll—IE)M (Xp, Xp4t) =1

This implies {xn} is a Cauchy Sequence, therefore, there exists a point u € X such that

lim x, = w.
n—-oo

Claim: u is a fixed point of p. Consider
M(u, pu, t) > M(pxn, pu, t) * M(U, Xn+1, 1) > & { A (Xp, U, ﬁ)} * M(u, Xn+1, 1) ---(2.6)
Again from Equation A',

t —
A Gon ,37) =

() M) (s e )

t t

M “V+ M ~“\+m =

(X“’”’Zk)+ (X“'pxn'zk)+ (”’pu'zk (X " L)
w U op

Taking lim, we get
n—-oo

t —
A (u,u, ﬂ) =

), ) (o)

t t

M )+ M )+ M —

(“’”’2k>+ (“’p”’2k>+ (”’p”'zk (w u )
) ) Zk

2
t t t
= {1 + M (u, pu,ﬁ) + M (u, pu,ﬁ) + (M (u,pu, ﬁ)) }
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2
t t
=14+2M (u, pu, 5) + (M (U, pU,ﬁ))
By above equation , we get
t t
M (u,pu,t) > & {M (u, pu, ﬁ)} *M (Xpyep, U, t)>M (u, u, ﬁ) *M (Xp41, U, t)
Taking lim and using lemma of previous published papers reference we get pu = u.
n—-oo

UNIQUENESS: Now we show that u is a unique fixed point of p. Suppose not, then there exists
a point z € X such that pz = z.

Consider 1 >M (z, u, t) =M (pz, pu, t) > § {A (Z' u i)}

Where A (z,u, %) =

M (z, Dz, %) * M (u, pu, %)

M <Z,u,£)+ M (Z,pz,£>+M<u,pu,£>+ M(Z, " %)
= M(Zu£)+M(ZZ£)+M(uu£)+ M(ZZ,%)*M(U, u,%)
R T e )

This implies that either & (z,1,7) = 1 or A (z,1,7) =M (zu,7)

Using it in previous equation, we get z = u.

Thus, u is a unique fixed point of p. This completes the proof of Theorem 2.1

COROLLARY 2.1. Let (X, M, *) be a complete fuzzy metric space and p :X — X be a
mapping satisfying

M (px,py, kt) >k (x,y,t)

where,

M(x.px.t)*M(y.py,t)}

(XY, b) = {M (x,y,t) + M (x,px,t) + M(y,py,t) + MGy D)

for all x, y € X, and k € (0, 1). Then p has a unique fixed point . The proof of the result follows
immediately from Theorem 2.1 by taking &(t) =t.
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3.Application.
Theorem 3.1

In this section, we give an application related to our result. Let us define y : [0, o] — [0, =], as
Y(t) = fot‘P(t)dt V t > 0, be a non-decreasing and continuous function. Moreover, for each € > 0,
Y(t)>0and Y(t)=0ifft=0.

Let (X, M, *) be a complete fuzzy metric space and p : X — X be a mapping satisfying

GG TOT S T TOW !

Where,
A(x,y,t)=

M(x, px, t) * M(y, py,t)
M(x,y, t)

forallx,ye X, ¢ e ¥, € @andk € (0, 1), Then p has a unique fixed point.

{M(x, v, t) + M(x,px,t) + M(y,py,t) +

Proof: By taking ¥(t) = 1 and applying Theorem 3.1, we obtain the result.

Conclusion

This study establishes the existence and uniqueness of a fixed point in fuzzy metric spaces by
formulating an appropriate contractive-type condition governed by a control function. The
introduced framework relaxes classical contraction assumptions and accommodates a broader
class of nonlinear mappings within fuzzy environments. By integrating control functions with
fuzzy metrics, the convergence of iterative sequences toward the fixed point is ensured,
enhancing the robustness of the results. The proposed theorem not only unifies and extends
several known fixed point results in fuzzy metric spaces but also provides a flexible analytical
tool. These findings have potential applications in decision theory, optimization, and fuzzy
differential equations.
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