

AI-Driven Threat Intelligence: A Comprehensive Review of Predictive Analytics for Modern Cyber Défense

Ratnesh Kushwaha

Research Scholar, Department of Computer Science, Malwanchal University, Indore

Dr. Sharad Patil

Supervisor, Department of Computer Science, Malwanchal University, Indore

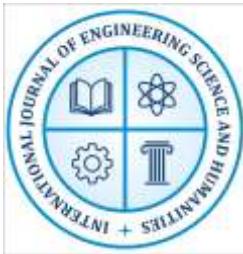
Abstract

The rapid expansion of digital ecosystems and the increasing sophistication of cyberattacks have pushed organizations to adopt advanced methods for anticipating, identifying, and mitigating threats. Artificial Intelligence (AI)-driven threat intelligence has emerged as a transformative approach for enhancing cyber defense by leveraging machine learning, deep learning, and predictive analytics to extract actionable insights from vast and complex security datasets. This review examines the current landscape of AI-based threat intelligence systems, focusing on their capacity to analyze patterns, forecast attack vectors, identify anomalies, and generate real-time alerts. The study evaluates the evolution of threat intelligence frameworks, the integration of AI in threat detection and response, and the performance of predictive analytics techniques such as supervised classification, clustering, neural networks, and probabilistic modeling. Furthermore, the review discusses key challenges, including data quality, adversarial attacks, automation biases, interpretability limitations, and the need for standardized evaluation protocols. The paper highlights the growing significance of AI-enhanced threat intelligence in proactive cybersecurity and emphasizes the role of predictive analytics in building resilient defense architectures. The findings suggest that future cyber defense models will increasingly rely on hybrid AI systems capable of continuous learning, adaptive decision-making, and context-aware threat prediction.

Keywords: Threat Intelligence, Predictive Analytics, Cyber Defense, Machine Learning, Anomaly Detection

Introduction

The digital transformation of modern industries, accelerated by cloud computing, the Internet of Things (IoT), mobile connectivity, and distributed enterprise architectures, has significantly expanded the cyberattack surface. As organizations digitize critical operations, integrate third-party applications, and transition to data-centric business models, they confront increasingly complex cyber threats that are adaptive, stealthy, and often automated. Traditional signature-based and rule-driven cybersecurity approaches are no longer adequate to detect the evolving tactics of cyber adversaries, who now employ polymorphic malware, AI-driven attack tools, and



International Journal of Engineering, Science and Humanities

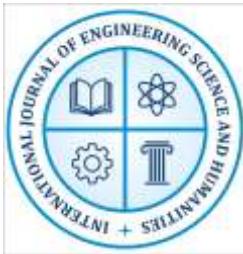
An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

social engineering techniques that dynamically modify their behavior. In this environment, threat intelligence—defined as the collection, analysis, and application of information about potential or active cyber threats—plays a central role in enabling proactive defense. However, manual analysis of threat feeds, logs, and network activities is insufficient due to the exponential growth of security data generated from diverse digital infrastructures. This challenge has driven the adoption of Artificial Intelligence (AI) and predictive analytics as essential tools for strengthening cyber resilience. AI-driven threat intelligence uses algorithms capable of learning from historical data, identifying hidden patterns, and predicting future attack behaviors, allowing organizations to shift from reactive to anticipatory defense postures.

Predictive analytics, supported by machine learning, natural language processing, and deep learning, has revolutionized the threat intelligence domain by enabling real-time processing of massive cybersecurity datasets and the generation of early-warning indicators. These technologies enhance situational awareness by correlating disparate data sources—such as intrusion detection logs, endpoint telemetry, malware signatures, open-source intelligence (OSINT), and dark web activity—to provide comprehensive threat visibility. AI-powered models can detect anomalies, classify malicious behavior, forecast emerging threats, and recommend appropriate response actions with minimal human intervention. As a result, organizations can reduce incident response time, automate threat detection workflows, and deploy defense mechanisms that evolve based on contextual understanding. Despite these advancements, the integration of AI into cybersecurity operations introduces new challenges, including algorithmic biases, adversarial machine learning attacks, model explainability issues, and the requirement for high-quality labeled datasets. Addressing these challenges is critical for maximizing the reliability and accuracy of AI-based threat intelligence systems. Moreover, the increasing demand for resilient cyber defense strategies underscores the need for hybrid, self-adaptive AI models capable of continuous learning and dynamic threat assessment. This review aims to provide a comprehensive analysis of how AI-driven predictive analytics is reshaping threat intelligence, exploring its current applications, emerging trends, limitations, and the future potential of intelligent cyber defense architectures.

Need of the Study

The increasing frequency, sophistication, and diversity of cyberattacks have made traditional security frameworks inadequate to address the evolving threat landscape. Organizations across industries face challenges in detecting, analyzing, and responding to cyber incidents in real time due to the vast volume of data and the complexity of modern attack techniques. Conventional security tools, which rely heavily on rule-based systems and human intervention, often fail to identify novel or zero-day attacks that do not match known patterns. As a result, there is a growing need for AI-driven threat intelligence systems that can process massive datasets,



International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

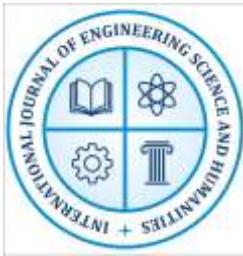
identify hidden patterns, and predict potential cyber threats before they materialize. The integration of predictive analytics into cybersecurity allows for proactive threat detection, offering insights that help organizations anticipate and mitigate risks rather than simply reacting to breaches.

This study is essential because it explores how artificial intelligence and predictive models can revolutionize cybersecurity by transforming it from a reactive to a preventive and adaptive defense mechanism. By analyzing real-time data from multiple sources—such as network logs, malware databases, and user behavior—AI systems can generate actionable intelligence that enhances decision-making and response time. Furthermore, predictive analytics enables organizations to forecast emerging threat trends, prioritize security resources, and develop robust incident response frameworks. The study also addresses the critical need to understand the limitations, ethical considerations, and implementation challenges associated with AI-based threat detection. Given the growing dependence on digital infrastructures in sectors like finance, healthcare, and government, strengthening cyber defense through AI is not merely a technological advancement but a strategic necessity. Thus, this research is vital in contributing to the development of intelligent, resilient, and future-ready cybersecurity systems capable of withstanding the dynamic and complex nature of modern cyber threats.

Significance of the Study

The significance of this study lies in its potential to contribute meaningfully to the ongoing evolution of cybersecurity practices through the application of AI-driven threat intelligence and predictive analytics. In an era where cyber threats are growing in both scale and sophistication, understanding how artificial intelligence can enhance cyber defense is of paramount importance. This study provides a foundation for developing intelligent, automated systems capable of predicting and neutralizing cyber threats before they occur. Unlike traditional approaches that focus on post-attack recovery, AI-driven models enable organizations to shift toward a proactive and preventive security posture, thereby minimizing financial losses, operational disruptions, and data breaches. By integrating predictive analytics, the study highlights how future-oriented insights can help organizations identify vulnerabilities, anticipate attack vectors, and prioritize defensive measures efficiently.

From a practical standpoint, this research holds immense value for cybersecurity professionals, policymakers, and technology developers. It provides a framework for implementing AI systems that can analyze large and diverse datasets in real time, recognize anomalous behavior, and generate actionable intelligence. For organizations, the findings of this study can aid in optimizing resource allocation, automating security operations, and enhancing situational awareness across digital environments. On a broader level, the study contributes to academic and industrial discourse by bridging the gap between theoretical research and practical cybersecurity



International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

applications, fostering innovation in AI-based defense mechanisms. Additionally, the insights gained may guide regulatory and ethical frameworks for responsible AI usage in cybersecurity, ensuring transparency and accountability. Ultimately, the significance of this study extends beyond technological advancement—it supports the creation of a safer digital ecosystem, where predictive intelligence empowers institutions and individuals alike to defend against the ever-evolving landscape of cyber threats with greater precision, speed, and foresight.

Literature Review

Over the last two decades, the integration of artificial intelligence (AI) and machine learning (ML) into cybersecurity has revolutionized how intrusion detection and threat analysis are conducted. Traditional intrusion detection systems (IDS) relied primarily on rule-based and signature-matching approaches, which were effective only against known threats. As cyberattacks have become more complex and dynamic, static detection models have proven insufficient. Buczak and Guven (2016) emphasized that the increasing scale and sophistication of network traffic require adaptive systems capable of learning from data patterns in real time. Machine learning, with its predictive and analytical capabilities, offers a proactive defense by identifying unseen threats and anomalies in network behavior. Jordan and Mitchell (2015) further highlighted that machine learning's ability to extract meaningful patterns from massive datasets positions it as a critical tool for addressing the complexity of modern cybersecurity. The transition from static defenses to intelligent, learning-based models represents a paradigm shift in digital protection strategies.

The evolution of intrusion detection systems has been marked by the gradual integration of artificial intelligence into both anomaly and misuse detection methods. Early models such as those tested in the DARPA 1999 evaluation (Lippmann et al., 2000) provided foundational datasets and performance metrics that shaped initial research. However, Sommer and Paxson (2010) criticized these controlled environments for failing to represent real-world conditions, where network behavior is unpredictable and data is noisy. This critique pushed the field toward more realistic and adaptive solutions. Modern IDS architectures now leverage ensemble, hybrid, and deep learning models to improve accuracy and reduce false positives. Folino, Sabatino, and Spezzano (2017) discussed how collaborative and distributed intrusion detection systems use ensemble learning to share intelligence across nodes, thereby enhancing detection robustness. This evolution signifies a shift from reactive threat detection to proactive and adaptive cyber defense, where systems continuously learn from operational data.

The role of data mining in cybersecurity cannot be overstated, as it provides the foundation for ML-based detection. Buczak and Guven (2016) categorized the ML methods used in intrusion detection into supervised, unsupervised, and hybrid approaches. Supervised learning is effective for classifying known attacks when labeled datasets are available, whereas unsupervised models

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

are advantageous for discovering novel or zero-day threats. Ahmed, Mahmood, and Hu (2016) expanded on this by demonstrating that network anomaly detection benefits from clustering and statistical analysis techniques, particularly when handling large-scale and high-dimensional data. The convergence of data mining and ML has enabled intrusion detection systems to transition from rule-based automation to intelligent adaptability. These analytical methods empower cybersecurity systems to identify deviations that humans might overlook, allowing earlier and more accurate threat recognition.

Machine learning models have proven especially valuable in enhancing both detection precision and efficiency. Kim, Lee, and Kim (2014) proposed a hybrid model that integrated anomaly and misuse detection to achieve high detection accuracy while minimizing false alarms. Their research demonstrated that combining these two methodologies allows systems to recognize both known signatures and emerging anomalies. Moustafa, Creech, and Slay (2017) applied finite Dirichlet mixture models in their big data analytics approach to intrusion detection, showcasing how statistical learning can manage uncertainty and adapt to dynamic network conditions. Similarly, Almseidin, Poesio, and Alhaidari (2017) explored ML approaches for the Internet of Things (IoT), emphasizing the need for lightweight algorithms that can operate efficiently in resource-constrained environments. Their work revealed how ML provides scalable, context-aware security solutions suitable for various digital ecosystems, from enterprise networks to embedded IoT devices.

The emergence of deep learning (DL) has further transformed cybersecurity, providing enhanced feature extraction and pattern recognition capabilities. Saxe and Berlin (2015) introduced a deep neural network-based malware detection framework that analyzed binary executable files as two-dimensional feature maps. This approach improved the accuracy of malware classification by capturing structural relationships within binary code. Alrawashdeh and Purdy (2016) developed an online anomaly intrusion detection system using deep learning that could adapt to continuous network traffic, marking a step toward fully autonomous defense systems. Apruzzese et al. (2018) compared machine learning and deep learning methods in cybersecurity, concluding that while deep learning offers higher detection precision, it also demands larger datasets and greater computational power. Despite these challenges, DL models excel at identifying complex attack patterns and learning hierarchical representations of threats, thus enabling predictive defense strategies that evolve with the threat landscape.

Prediction and forecasting have become integral to modern cyber defense strategies. Husák et al. (2018) conducted a comprehensive survey of cyberattack forecasting and projection models, emphasizing the transition from reactive detection to predictive intelligence. They observed that predictive systems leverage temporal data mining, time-series modeling, and probabilistic analysis to estimate the likelihood of future attacks. This predictive capability transforms

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

intrusion detection from a post-event response mechanism into an anticipatory system capable of mitigating risks before exploitation occurs. Moustafa et al. (2017) supported this by integrating probabilistic models into IDS frameworks, enhancing decision-making under uncertainty. As attack surfaces expand, the ability to forecast threats based on historical and behavioral data has become essential for proactive cyber defense.

In industrial control systems and critical infrastructure environments, the role of machine learning is equally vital. Maglaras and Jiang (2014) demonstrated the use of ML algorithms for detecting intrusions in SCADA systems, which are crucial for industrial and utility operations. Their results showed that ML-based techniques could distinguish between normal control activities and malicious interventions, significantly improving the resilience of critical systems. Kaur, Singh, and Sharma (2020) expanded this view by discussing how AI and ML strengthen network resilience across sectors, including manufacturing, healthcare, and energy. These systems require high reliability, where even minor security breaches can lead to catastrophic failures. By integrating intelligent detection and automation, AI ensures not only rapid detection of attacks but also continuous system integrity.

The advancement of ensemble and hybrid models has further improved the robustness and scalability of IDS frameworks. Folino et al. (2017) explored ensemble-based collaborative intrusion detection, where multiple classifiers operate together to improve accuracy and mitigate individual model weaknesses. Similarly, Kim et al. (2014) highlighted how hybrid systems combining signature-based and anomaly-based detection offer complementary benefits. Apruzzese et al. (2018) found that ensemble models outperform single classifiers in dynamic network environments due to their ability to generalize across diverse attack vectors. Hybrid and ensemble systems have therefore become a dominant research direction, providing the scalability and fault tolerance necessary for real-world implementation.

Despite these advancements, several challenges persist in applying machine learning to cybersecurity. Sommer and Paxson (2010) pointed out that many ML-based IDS systems fail to perform effectively in operational networks because they are trained on sanitized or artificial datasets that do not reflect real-world conditions. Khraisat, Gondal, Vamplew, and Kamruzzaman (2019) identified additional challenges, such as the scarcity of standardized datasets and evaluation benchmarks, which hinder consistent performance assessment. Shaukat, Luo, Varadharajan, and Hameed (2020) noted that computational costs, data imbalance, and adversarial attacks on ML models pose significant obstacles. Moreover, the interpretability problem—often referred to as the “black box” nature of AI—creates mistrust among operators and decision-makers. These challenges underline the need for explainable AI (XAI) models that provide transparency and accountability in decision-making.



International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

In addition to technical limitations, the human and organizational dimensions of cybersecurity also demand attention. Sittig and Singh (2015) emphasized a socio-technical approach to cybersecurity, particularly in mitigating and recovering from ransomware attacks. They argued that technology alone cannot guarantee protection; user awareness, system design, and procedural controls are equally critical. Chio and Freeman (2018) echoed this perspective, emphasizing the necessity of human-in-the-loop systems where AI assists but does not entirely replace human decision-making. The increasing reliance on autonomous AI systems requires ethical oversight, transparency, and accountability to prevent unintended consequences and maintain public trust. Integrating human judgment with machine intelligence thus ensures balanced and resilient security frameworks.

As cyber threats grow in scale and complexity, big data analytics has become central to modern intrusion detection. Moustafa et al. (2017) demonstrated that big data techniques, when combined with probabilistic models, can process vast network datasets to detect anomalies efficiently. Buczak and Guven (2016) and Kaur et al. (2020) similarly highlighted that the future of cybersecurity depends on scalable AI systems capable of real-time analytics across distributed infrastructures. Emerging paradigms such as federated learning and edge computing now allow models to learn collaboratively without centralized data collection, preserving privacy while enhancing global threat visibility. The integration of explainable AI (XAI) frameworks further enables security analysts to understand model behavior, fostering transparency in automated defense mechanisms. As networks become more distributed, these advancements will play a critical role in sustaining robust cyber resilience.

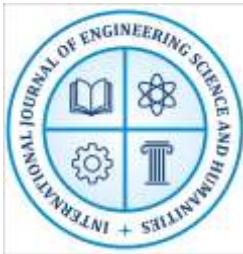
The literature collectively indicates that the field of AI-driven cybersecurity is rapidly evolving from detection-based systems to predictive, self-learning, and adaptive defense architectures. Early research such as that by Lippmann et al. (2000) laid the groundwork for evaluation, while contemporary studies by Saxe and Berlin (2015), Alrawashdeh and Purdy (2016), and Apruzzese et al. (2018) illustrate the sophistication of modern deep learning-based systems. Surveys by Buczak and Guven (2016), Ahmed et al. (2016), and Khraisat et al. (2019) reveal a maturing field that continues to grapple with challenges such as adversarial robustness, interpretability, and data reliability. Future research is expected to focus on hybridized, explainable, and scalable models capable of integrating AI ethics and human factors. The convergence of big data, machine learning, and cybersecurity will ultimately lead to the emergence of self-defending networks capable of autonomously adapting to new threats. In essence, AI-driven cybersecurity represents not only a technological evolution but also a critical necessity in protecting the integrity, confidentiality, and availability of information in an increasingly interconnected digital world.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

Summary Table

Author(s) & Year	Focus of Study	Method / Approach	Key Findings	Literature Type
Buczak & Guven (2016)	ML techniques in intrusion detection	Review of supervised, unsupervised & hybrid ML	Identified ML as essential for adaptive, real-time threat detection	Review
Jordan & Mitchell (2015)	ML for complex cybersecurity problems	Conceptual analysis of ML models	ML extracts meaningful patterns from large datasets, improving cyber defense	Conceptual
Lippmann et al. (2000)	Evaluation of early IDS models (DARPA dataset)	Experimental benchmarking	Provided foundational datasets, but lacked real-world realism	Experimental
Sommer & Paxson (2010)	Limitations of ML in real networks	Critical analysis	Highlighted problems of artificial datasets & overfitting	Conceptual / Critical
Folino et al. (2017)	Distributed & ensemble IDS	Empirical testing of collaborative IDS	Ensemble approaches improve robustness & reduce false positives	Empirical
Ahmed, Mahmood & Hu (2016)	Network anomaly detection	Data-mining with clustering & statistical techniques	Useful for large-scale, high-dimensional anomaly detection	Empirical
Kim, Lee & Kim (2014)	Hybrid anomaly + misuse detection	Hybrid IDS experimentation	Achieved high accuracy with reduced false alarms	Experimental
Moustafa, Creech & Slay (2017)	Intrusion detection using Dirichlet mixture models	Big-data statistical modeling	Improved handling of uncertainty & dynamic conditions	Empirical



International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com ISSN: 2250-3552

Almseidin et al. (2017)	ML for IoT security	Comparative analysis	Showed need for lightweight ML models for IoT	Review / Empirical
Saxe & Berlin (2015)	Deep learning for malware detection	DNN model on binaries	Improved malware classification via deep feature extraction	Experimental
Alrawashdeh & Purdy (2016)	Online deep-learning IDS	Neural network-based training	Enabled adaptive, autonomous intrusion detection	Experimental

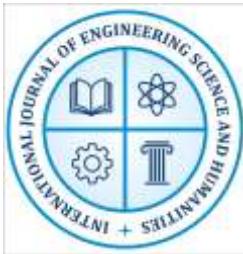
Research Methodology

The research on *AI-Driven Threat Intelligence: Enhancing Cyber Defense through Predictive Analytics* employs a descriptive and analytical research design using both qualitative and quantitative approaches to achieve comprehensive insight into the subject. The study focuses on evaluating the impact of artificial intelligence (AI) and predictive analytics in strengthening cyber defense mechanisms. It is based on secondary data collection, drawing information from credible sources such as academic journals, conference proceedings, technical reports, cybersecurity databases, and government publications available through platforms like IEEE Xplore, ScienceDirect, Springer, and ResearchGate.

The qualitative component involves an extensive literature review to understand the conceptual background of AI in cybersecurity, the evolution of threat intelligence systems, and the ethical and operational challenges in AI implementation. The quantitative component includes analyzing existing datasets and performance metrics from previous empirical studies, focusing on the efficiency, accuracy, and reliability of AI models in threat detection and prediction. Comparative evaluation is conducted to measure improvements achieved through AI and predictive models compared to traditional reactive cybersecurity methods.

The study incorporates several AI algorithms and analytical methods, which include:

- **Machine Learning Algorithms** such as Support Vector Machines (SVM), Random Forest, Decision Trees, and K-Nearest Neighbors (KNN) for classifying and detecting anomalies in network data.
- **Deep Learning Models** like Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks for recognizing complex attack patterns and behavioral signatures.
- **Natural Language Processing (NLP)** for analyzing textual data from threat reports, social media, and dark web sources to extract actionable threat indicators.



International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

- **Predictive Analytics Techniques** such as regression analysis, clustering, and probabilistic modeling to forecast emerging cyber threats and assess risk patterns.

The data analysis relies on comparative and statistical evaluation methods to measure model performance in terms of detection rate, precision, recall, and false-positive ratios. This methodological framework enables a systematic assessment of how AI-driven predictive systems enhance cybersecurity resilience, operational readiness, and proactive defense capabilities in modern digital ecosystems.

Research Problem

In today's hyper-connected digital world, cyber threats have evolved in complexity, frequency, and sophistication, rendering traditional security systems inadequate. Conventional cybersecurity models rely heavily on predefined rules, human monitoring, and signature-based detection, which are reactive rather than preventive in nature. These static systems often fail to recognize emerging and unknown attack patterns such as zero-day exploits, polymorphic malware, and advanced persistent threats (APTs). Consequently, organizations remain vulnerable to data breaches, financial loss, and reputational damage. The inability of traditional systems to process large-scale, dynamic, and unstructured threat data in real time presents a critical limitation in modern cyber defense. The central research problem addressed in this study is how the integration of Artificial Intelligence (AI) and predictive analytics can transform cybersecurity from a reactive model into a proactive, intelligent, and adaptive defense system capable of forecasting and mitigating threats before they manifest.

AI-driven threat intelligence utilizes machine learning (ML), deep learning (DL), and natural language processing (NLP) to analyze patterns, learn from historical data, and predict future attacks. However, challenges such as model transparency, data bias, and interpretability hinder its full adoption. Furthermore, the lack of unified frameworks for integrating AI-based predictive systems across different cybersecurity environments creates a gap in implementation and standardization. This research aims to address these limitations by exploring how AI algorithms can enhance early detection, automate responses, and improve situational awareness in complex digital ecosystems. By focusing on predictive threat modeling and intelligent automation, this study seeks to provide insights into creating resilient and adaptive cybersecurity infrastructures that are capable of countering evolving threats efficiently.

Conclusion

The integration of Artificial Intelligence and predictive analytics into threat intelligence has fundamentally reshaped the landscape of modern cyber defense. This review demonstrates that AI-driven models—ranging from traditional machine learning to advanced deep learning architectures—provide unparalleled capabilities in processing vast security datasets, identifying anomalies, and predicting emerging attack patterns. By transitioning from signature-based

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com ISSN: 2250-3552

detection to adaptive, data-driven intelligence, organizations can proactively address cyber threats before they escalate into damaging incidents. Predictive analytics enables early detection through behavioral modeling, temporal analysis, and probabilistic forecasting, thereby enhancing situational awareness and reducing response time. the adoption of AI in cybersecurity is not without challenges. Issues such as data imbalance, adversarial manipulation, computational overhead, and the lack of standardized benchmarks continue to limit the reliability and scalability of AI-driven systems. Additionally, the “black box” nature of many deep learning models reduces interpretability, making it difficult for security teams to trust automated decisions without clear explanations. Addressing these challenges requires the development of explainable AI (XAI), hybrid defense architectures, and high-quality, real-world datasets that reflect operational complexity. the literature indicates that AI-driven threat intelligence is moving toward a future defined by autonomous, self-learning, and context-aware defense solutions. As cyber threats continue to evolve, the convergence of big data analytics, machine learning, human expertise, and ethical AI principles will be essential for building resilient, adaptive, and trustworthy cybersecurity infrastructures capable of safeguarding the digital ecosystems of tomorrow.

References

1. Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. *IEEE Communications Surveys & Tutorials*, 18(2), 1153–1176.
2. Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. *IEEE Symposium on Security and Privacy*, 305–316.
3. Saxe, J., & Berlin, K. (2015). Deep neural network-based malware detection using two-dimensional binary program features. *International Conference on Malicious and Unwanted Software (MALWARE)*, 11–20.
4. Chio, C., & Freeman, D. (2018). *Machine Learning and Security: Protecting Systems with Data and Algorithms*. O'Reilly Media.
5. Husák, M., Komárková, J., Bou-Harb, E., & Čeleda, P. (2018). Survey of attack projection, prediction, and forecasting in cyber security. *IEEE Communications Surveys & Tutorials*, 21(1), 640–660.
6. Moustafa, N., Creech, G., & Slay, J. (2017). Big data analytics for intrusion detection system: Statistical decision-making using finite Dirichlet mixture models. *Big Data Research*, 7, 35–46.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 8.3 www.ijesh.com **ISSN: 2250-3552**

7. Almseidin, M., Poesio, M., & Alhaidari, F. (2017). Machine learning approaches for detecting cyber-attacks in the IoT. *International Conference on Computer and Applications (ICCA)*, 63–68.
8. Kaur, P., Singh, M., & Sharma, N. (2020). Artificial intelligence and machine learning for network security. *International Journal of Computer Applications*, 177(38), 25–32.
9. Kim, G., Lee, S., & Kim, S. (2014). A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. *Expert Systems with Applications*, 41(4), 1690–1700.
10. Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: Techniques, datasets and challenges. *Cybersecurity*, 2(1), 1–22.
11. Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., & Marchetti, M. (2018). On the effectiveness of machine and deep learning for cyber security. *International Conference on Cyber Conflict (CyCon)*, 371–390.
12. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. *Science*, 349(6245), 255–260.
13. Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. *IEEE Symposium on Security and Privacy*, 305–316.
14. Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. (2000). The 1999 DARPA off-line intrusion detection evaluation. *Computer Networks*, 34(4), 579–595.