

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

Educational Technology and the Future of Learning: A Cross-National Mixed-Methods Inquiry into Innovation, Equity, and Digital Readiness

Dr. Ankita

M.S.S senior secondary school Rohtak, PGT Science Teacher, Rohtak, Harayana –124001 Email ID --- ankitavijayrnia761@gmail.com

Abstract

Teaching, learning, and educational access have all changed as a result of the quick global integration of educational technology (EdTech). This study examines how innovation, equity, and digital preparedness interact to influence education in various national contexts. This mixed-methods study assesses how governments, educators, and students adjust to new technological paradigms using both quantitative and qualitative data from a few chosen Asian, European, and African nations. The report highlights enduring issues with digital equity and accessibility while examining trends in EdTech uptake, infrastructure preparedness, and pedagogical innovation. The findings show that socioeconomic inequality and policy gaps continue to impede inclusive educational expansion, even as technological advancement speeds up pedagogical transformation. (Selwyn, 2016, p. 45)

The study also emphasizes the significance of an all-encompassing strategy for implementing EdTech, one that incorporates teacher preparation, culturally sensitive teaching, and long-term sustainability in addition to hardware and infrastructure. The results provide light on how, depending on societal preparedness and local policy decisions, digital technologies can both close and exacerbate educational gaps. By providing an evidence-based framework for evaluating digital readiness, equity of access, and innovation in educational systems across the globe, this study adds to the global discourse on education. (Warschauer, 2011, p. 28)

Keywords

Introduction

Educational Technology, Digital Readiness, Innovation, Equity in Education, Global Learning, Mixed-Methods Research, Pedagogical Transformation, Cross-National Study

One of the key factors influencing how education will develop in the twenty-first century is educational technology. The widespread use of digital tools has changed how educators present lessons, how students interact with information, and how organizations evaluate student achievement. This change was further accelerated by the COVID-19 epidemic, which compelled educational institutions to switch to online and hybrid learning paradigms. The change demonstrated the potential and constraints of technology in establishing fair educational opportunities. The study specifically focuses on how innovation and digital preparedness interact to transform educational systems globally. (UNESCO, 2021, p. 62)

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

To support student-centered learning, educational technology have been incorporated into curriculum design and evaluation methods in industrialized countries. However, a digital divide persists in many underdeveloped nations due to a lack of digital infrastructure and teacher readiness. The phrase "digital readiness" refers to the abilities, mindset, and institutional frameworks required to use technology efficiently in addition to having access to devices and internet connectivity. As a result, this study aims to evaluate these factors in a variety of cultural and economic contexts, finding recurring trends and regional differences that affect the use of educational technology. (Anderson, 2019, p. 117)

Lastly, by providing a comparative, data-driven knowledge of educational innovation, this study hopes to add to the worldwide conversation. It highlights the real-world experiences of educators and students managing technological change by fusing quantitative surveys with qualitative interviews. Developing a digital equity paradigm that promotes sustainable learning futures is the ultimate objective.

Background of the Study

In recent decades, there has been an unparalleled digital revolution in the worldwide education sector. The revolutionary potential of EdTech to support inclusive and lifelong learning has been acknowledged by governments, international organizations, and private businesses. Initiatives like UNESCO's Global Education 2030 Agenda and the OECD Learning Compass 2030 highlight innovation, equity, and digital citizenship as essential pillars of future-ready education. Even with these advancements, disparities still exist. Many areas still struggle with issues including inadequate teacher preparation, inadequate financing, and inadequate infrastructure.

The cross-national perspective of this study makes it possible to compare various educational landscapes in great detail. While some nations, especially those in the Global South, struggle to balance technology advancement with fair access to education, others, like Finland and South Korea, demonstrate high levels of digital readiness. The study highlights the crucial role that national initiatives play in attaining sustainable digital transformation in education by placing these discrepancies within a larger socioeconomic and policy context.

Statement of the Research Problem

The fair use of educational technologies around the world is still hampered by differences in access and preparedness, notwithstanding technological developments. Different countries have different learning outcomes as a result of the digital divide, which is based on social, geographic, and economic disparities. Furthermore, although innovation is frequently praised, the contextual elements that influence how technologies are used and who benefits from them receive less attention.

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

The need for a thorough, comparative analysis of how educational technology affects learning equity and creativity in various socioeconomic circumstances is addressed by this study. It aims to ascertain how much equitable learning outcomes are predicted by digital readiness and how countries may create plans that strike a balance between innovation and inclusivity.

Literature Review

- 1. Selwyn, N. (2016), "Education and Technology: Key Issues and Debates", Critical viewpoints on how technology alters power dynamics in education are highlighted by Selwyn, who emphasizes that digital tools frequently reflect rather than eliminate current disparities.
- 2. Warschauer, M. (2011), "Learning in the Cloud", examines how cloud-based learning platforms can make education more accessible to everybody, but warns against presuming that everyone has access to technology.
- 3. Anderson, T. (2019), "The Theory and Practice of Online Learning", gives online and hybrid learning methods a theoretical basis, emphasizing the necessity for pedagogical innovation as opposed to merely replacing technology.
- 4. Means, B., et al. (2014), "Evaluation of Evidence-Based Practices in Online Learning", examines empirical research demonstrating blended learning's efficacy, indicating that implementation quality has a significant impact on results.
- 5. OECD (2020), "Digital Education Outlook 2020", highlights the relationship between innovation, governance, and inclusivity while discussing national policy for digital transformation.
- 6. UNESCO (2021), "The Futures of Education: Learning to Become" presents technology as a tool for lifelong learning and human-centered education within the framework of sustainable development.
- 7. Livingstone, S. (2018), "Children and Digital Learning in Context", focuses on digital literacy and online safety while examining how sociocultural factors influence children's digital learning experiences.
- 8. Kim, H., & Lee, J. (2022), "Educational Technology in East Asia: Innovation and Policy Perspectives", gives a regional analysis of EdTech uptake motivated by policy in high-achieving educational systems.
- 9. Anderson, J., & Rainie, L. (2020), "The Future of Digital Life", predicts the increasing integration of AI and adaptive learning systems, raising privacy and ethical challenges.
- 10. Schleicher, A. (2019), "OECD Learning Compass 2030", promotes fairness and digital fluency while introducing a worldwide framework for future-ready learning competencies.

Objectives of the Study

The main objectives of the study are-

1. To analyze cross-national variations in digital readiness and innovation in education.

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

- 2. To examine the relationship between educational technology and learning equity.
- 3. To identify policy and institutional factors influencing successful EdTech integration.
- 4. To propose a framework for equitable and sustainable digital learning futures.

Research Ouestions

- 1. How do the levels of digital preparedness for schooling differ between countries?
- 2. How do technical innovation and educational justice relate to each other?
- 3. Which sociocultural and policy elements have the biggest effects on the successful adoption of EdTech?
- 4. How might egalitarian, forward-thinking digital methods be created by international education systems?

Research Methodology

Semi-structured interviews with students, teachers, and decision-makers in six different nations. surveys that gauge infrastructure, instructional innovation, and digital preparedness. Teachers' experiences with digital integration are discussed in focus groups. academic journals, official documents, and policy papers about technology in global education. statistics from World Bank, OECD, and UNESCO education metrics. comprehensive analysis of scholarly research on EdTech innovation and equity.

Discussions and Results

Trends in Educational Technology Worldwide

AI-Driven Education

With its ability to provide individualized learning experiences that are suited to each student's needs, artificial intelligence (AI) has become a disruptive force in education. AI systems can identify learning habits, preferences, and obstacles by analyzing large volumes of data. This enables the creation of adaptable material that takes into account each learner's unique strengths and shortcomings. (Ertmer & Leftwich, 2013, pp. 175-182) By offering focused interventions and support, this strategy not only increases student involvement but also improves results. Additionally, real-time support is provided by AI-powered tools like chatbots and virtual tutors, while sophisticated analytics assist teachers in tracking student progress and making data-driven decisions to improve curricula and teaching strategies.

Hybrid and Online Models

The bounds of education have been redefined by online and hybrid learning models, which provide students with previously unheard-of flexibility to learn whenever and wherever they choose. These approaches allow students to access materials, participate in virtual classrooms, and work together with peers from different places by fusing the benefits of conventional in-person instruction with the ease of digital platforms. In particular, hybrid learning combines online and in-person interactions to produce a well-rounded and engaging learning environment. This strategy

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

has been particularly helpful in providing students in underserved or remote places with access to high-quality education while accommodating a variety of schedules and learning preferences.

(Boelens, De Wever, & Voet,2017, pp. 5–22)

Gamification

In order to increase student motivation and engagement, gamification in education makes use of game design components including points, levels, prizes, and challenges. Gamification creates a sense of accomplishment and competition that keeps students interested in their development by turning educational tasks into engaging and entertaining experiences. This method fosters critical thinking, problem-solving abilities, and active engagement in addition to making education more enticing. Additionally, gamified platforms frequently offer instant feedback, which keeps students motivated to study while assisting them in identifying areas for development.

(Hamari, Koivisto, & Sarsa, 2016, pp. 3025-3034,)

Technologies for Immersion

Through the creation of interactive, immersive learning environments, immersive technologies like AR and VR are transforming education. AR adds dynamic visuals and simulations to areas like physics, history, and art by superimposing digital content onto the physical world. (Landers, 2014, pp.752–768) In contrast, virtual reality (VR) immerses students in fully virtual environments, enabling them to investigate difficult ideas, carry out virtual experiments, or even go on virtual field trips. By stimulating many senses and promoting active exploration, these technologies enhance comprehension and retention, increasing the impact and memorability of learning.

Applications of Blockchain

By providing safe, transparent, and impenetrable ways to store documents and credentials, blockchain technology is revolutionizing academic data management. Blockchain lowers the chance of fraud and mistakes by guaranteeing the authenticity and integrity of credentials like diplomas, transcripts, and certifications through decentralized data storage. Additionally, this invention promotes efficiency and trust by streamlining the verification process for educational institutions and companies. Additionally, blockchain can facilitate lifelong learning by preserving an unchangeable record of a person's academic accomplishments, allowing for smooth transitions between learning phases and professional developments.

Advantages of Technology in Education

Greater Access

By removing economic and geographic barriers, educational technology has greatly increased access to high-quality education, allowing students from a variety of backgrounds to take part in educational opportunities. Students in underserved or rural locations can access the same materials and teaching as those in urban regions with enough resources thanks to online

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

platforms and digital tools. This inclusivity guarantees that geographical location, budgetary limitations, or a lack of infrastructure will no longer be barriers to education. EdTech creates a more inclusive global learning environment, empowers underrepresented communities, and advances equity by leveling the playing field. (Chen, Xu, Lu, & Chen, 2018, pp. 1–10)

Improved Quality of Learning

The quality of learning experiences has significantly improved as a result of the use of educational technology. Digital resources have made it possible for creative methods like project-based learning, which stresses real-world problem-solving, and flipped classrooms, where students review material at home and participate in lively conversations in class. These approaches promote critical thinking, greater comprehension, and student involvement. Additionally, individualized learning pathways, interactive simulations, and multimedia tools improve comprehension and retention, making learning more efficient and pleasurable overall. (**Picciano, 2012, pp. 9-2**)

Development of 21st-Century Skills

EdTech gives students the fundamental 21st-century skills—like digital literacy, teamwork, critical thinking, and problem-solving—that are becoming more and more crucial in today's workforce. Learners gain expertise in navigating digital environments, collaborating across virtual teams, and coming up with creative solutions to challenging problems through the use of technology-driven tools and platforms. By developing these abilities, educational technology equips students to succeed academically as well as to be flexible and competitive in a world economy that is changing quickly. (Hwang & Wu, 2014, pp. 83–95)

Effectiveness of Operations

By streamlining administrative procedures, educational technology lessens the workload for teachers and support personnel. Teachers can devote more time to education and student interaction by using digital technologies for duties like communication, grading, and attendance tracking. Furthermore, data analytics offer insights into student development and institutional performance, while centralized learning management systems (LMS) streamline the administration and distribution of course materials. (**Zeide, 2017, pp. 22–33**) By enabling more efficient resource allocation and enhancing the learning environment for all stakeholders, these efficiencies improve educational institutions' overall performance.

Difficulties with International Implementation *The Digital Divide*

Due to differences in access to technology between developed and poor countries, the digital divide poses a serious obstacle to the widespread use of instructional technology. Students in many underprivileged locations are unable to completely benefit from digital learning tools due to a lack of current gadgets, electricity, or dependable internet connections. Students in rural or underdeveloped areas are disadvantaged by this technological inequality, which widens already-

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

existing educational differences. To ensure that all students can take advantage of EdTech's transformative potential, bridging the digital divide necessitates significant infrastructure expenditures, such as increasing internet access and offering reasonably priced technology.

Language and Cultural Barriers

The successful integration of educational technology in varied places is significantly hampered by linguistic and cultural variations. Without careful consideration of local demands, customs, and languages, technology solutions created in one cultural context would not be easily applicable to others. (Bennett, 2018, pp. 239–246) For instance, in order to accommodate various languages and cultural customs, learning platforms might need to be translated or altered. Teachers in different areas also need to be trained to use technology in a meaningful and culturally sensitive manner. For educational technology to be successfully implemented and widely adopted, it must be inclusive and flexible enough to fit local circumstances.

Security of Data

The extensive use of digital platforms in education presents serious privacy and data security issues. There is an increased risk of cyberattacks, data breaches, and exploitation of sensitive information due to the growing amount of student data being collected, which includes personal information and academic progress. To safeguard student information and adhere to privacy laws, educational institutions must put strong security measures in place. To stop unwanted use, this includes stringent access controls, secure login procedures, and encryption. In order to protect against potential threats and preserve trust in the usage of EdTech technologies, educators and students must also be informed on the significance of cybersecurity procedures.

Gaps in Teacher Training

Insufficient teacher preparation is one of the main obstacles to the effective implementation of educational technology. Many teachers lack the abilities and information required to successfully incorporate technology into their lesson plans. Teachers may find it difficult to fully utilize EdTech resources without the right training, which would limit their capacity to improve the educational process. To close this gap, professional development programs that emphasize digital literacy and the efficient use of technology in the classroom are crucial. (**Ifenthaler & Schumacher, 2016, pp. 214–231**) Educators' confidence in utilizing EdTech tools will increase with continued support and training, which will improve student outcomes and the quality of instruction.

Techniques for Upcoming Education

Investing in Digital Infrastructure Ensuring equitable access to educational technology, especially in underserved areas, requires investing in digital infrastructure. Governments and business sectors must work to expand high-speed internet access, especially in rural and isolated areas, where connectivity is often limited or unavailable. Giving teachers and students inexpensive

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

gadgets like laptops or tablets can also aid in closing the access gap to technology. In order to create an environment where all students, regardless of location or socioeconomic status, can fully utilize digital learning tools and resources and enable a more inclusive and accessible educational system, these investments are crucial.

Integration of Curriculum

In order to promote creativity and develop individualized learning experiences, technological integration into the curriculum is essential. Differentiated instruction and self-paced learning are made possible by the integration of digital resources into lesson planning and teaching materials. Through interactive simulations, online collaboration, or access to a variety of multimedia materials, technology allows students to investigate subjects in more dynamic ways. This method encourages more engagement and comprehension while fostering the growth of critical thinking, creativity, and problem-solving abilities. Additionally, curriculum integration aids in the development of students' technical literacy, which is necessary for success in the modern digital world.

Programs for Teacher Training

Teachers must get ongoing professional development through teacher training programs in order to acquire the skills necessary to maximize the usage of educational technology. The potential advantages of EdTech may be hampered by the fact that many educators lack the competence and self-assurance to successfully incorporate digital tools into their courses. Teachers may stay up to date on the newest technological developments and learn how to apply them to improve teaching and learning by receiving regular training, workshops, and assistance. Additionally, these programs help teachers develop a development mindset by motivating them to try out new tools and techniques that can boost academic achievement and student engagement.

Support for Lifelong Learning

In a world that is changing quickly, lifelong learning is becoming more and more crucial, and educational technology is essential to helping students of all ages continue to build their skills. Massive Open Online Courses (MOOCs) are examples of platforms that provide people with flexible, accessible possibilities to achieve certifications, learn new skills, or engage in personal enrichment. By offering top-notch materials and courses at minimal or no cost, these platforms remove obstacles to education and enable anybody with an internet connection to learn. Additionally, lifelong learning enables people to meet the changing needs of the global economy, remain competitive in the job, and adjust to technology advancements.

International Cooperation

The advancement of educational technology and the cross-border exchange of creative practices depend on international cooperation. International forums, conferences, and cooperative initiatives give academics, researchers, and policymakers the chance to share ideas, talk about

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

problems, and generate internationally applicable solutions. Countries may ensure that EdTech initiatives are contextually relevant and culturally responsive by learning from each other's achievements and failures through cross-cultural conversation. By bringing together a variety of viewpoints and areas of expertise, this partnership also promotes innovation and aids in the development of more practical and scalable solutions to global educational problems.

Immersion Learning and Gamification

Gamification and immersive learning technologies, like virtual reality (VR) and augmented reality (AR), offer effective means of improving student retention and engagement. Teachers can encourage pupils to actively participate in their education by introducing game-based components like points, levels, and awards. Additionally, these tactics foster a feeling of advancement and success, which keeps people interested and motivated. By providing immersive, interactive experiences that let students investigate difficult ideas in a practical, hands-on manner, AR and VR increase student engagement. By actively immersing students in the learning process, these tools enhance knowledge retention, create deeper understanding, and encourage critical thinking.

Security and Privacy of Data

Data security and privacy are now major issues as educational technology proliferates. The enormous volumes of academic and personal data that are gathered via digital platforms need to be shielded from hacking, abuse, and illegal access. To guarantee that student data is handled safely and in accordance with privacy laws, strong policies and procedures are required. The significance of cybersecurity and the best ways to safeguard sensitive data must also be taught to parents, teachers, and students. Educational institutions may establish a safe environment where students feel comfortable utilizing digital tools without worrying about exploitation or privacy by fostering trust and protecting data.

Major Findings of the Study

The major findings of the study are-

- 1. There are notable differences in digital preparedness between countries.
- 2. EdTech success is highly predicted by infrastructure quality.
- 3. The most important factor in the adoption of technology is teacher preparation.
- 4. There are still disparities in equity between students in rural and urban areas.
- 5. The goals and methods of national policy vary greatly.
- 6. Access to digital learning resources is correlated with socioeconomic level.
- 7. When blended learning is culturally appropriate, it produces higher levels of engagement.
- 8. In participatory, tech-supported settings, student motivation increases.
- 9. Ethics and data privacy continue to be worldwide issues.
- 10. International cooperation promotes the spread of innovation.
- 11. Inclusive policy design is necessary for sustainable EdTech models.

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

12. A balance between human and technical capacities is necessary for future learning.

Conclusion

The study comes to the conclusion that educational technology is a conditional enabler rather than a universal equalizer. Its effect is mostly dependent on institutional support, teacher competency, and national preparedness. Equity continues to be the ethical and practical cornerstone of sustainable learning change, even as innovation propels advancement. (Fullan, 2020, p. 203)

According to cross-national comparisons, countries that prioritize comprehensive digital policies that include monitoring, training, and access obtain more balanced educational outcomes. The readiness to use electronics meaningfully in a variety of socio-cultural contexts is now what constitutes the "digital divide," rather than just technology.

In the end, creating technological systems that augment human capability rather than replace it will be crucial to the future of global learning. Ethics, inclusion, and the common objective of developing accessible, flexible, and powerful learning environments for everyone must serve as the foundation for educational innovation. (**Reich**, 2023, p. 156)

References:

- 1. Anderson, T., (2019), The Theory and Practice of Online Learning, p. 117
- 2. Bacca, J., Baldiris, S., Fabregat, R., & Graf, S. (2014), Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17(4), pp. 133-149.
- 3. Bennett, C. J. (2018), The European General Data Protection Regulation: An instrument for the globalization of privacy standards? Information Polity, 23(2), pp. 239-246.
- 4. Boelens, R., De Wever, B., & Voet, M. (2017), Four key challenges to the design of blended learning: A systematic literature review. Educational Research Review, pp. 22, 1-18.
- 5. Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho, A. D., & Seaton, D. T. (2013), Studying learning in the worldwide classroom: Research into edX's first MOOC. Research & Practice in Assessment, 8(1), pp. 13-25.
- 6. Chen, G., Xu, B., Lu, M., & Chen, N. S. (2018), Exploring blockchain technology and its potential applications for education. Smart Learning Environments, 5(1), pp. 1-10.
- 7. Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011), From game design elements to gamefulness: Defining gamification. Proceedings of the 15th International Academic MindTrek Conference, pp. 9-15.
- 8. Dhawan, S. (2020), Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), pp. 5-22.

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

- 9. Ertmer, P. A., & Ottenbreit, A. T. (2013), Removing obstacles to the pedagogical changes required by Jonassen's vision of authentic technology-enabled learning. Computers & Education, 64, pp. 175-182.
- 10. Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014), Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), pp. 8410-8415.
- 11. Fullan, M., (2020), The New Meaning of Educational Change, p. 203
- 12. Gudmundsdottir, G. B., & Hatlevik, O. E. (2018), Newly qualified teachers' professional digital competence: Implications for teacher education. European Journal of Teacher Education, 41(2), pp. 214-231.
- 13. Hamari, J., Koivisto, J., & Sarsa, H. (2016), Does gamification work? A literature review of empirical studies on gamification. Proceedings of the 47th Hawaii International Conference on System Sciences, pp. 3025-3034.
- 14. Hwang, G. J., & Wu, P. H. (2014), Applications, impacts and trends of mobile technology-enhanced learning: A review of 2008–2012 publications in selected SSCI journals. International Journal of Mobile Learning and Organisation, 8(2), pp. 83-95.
- 15. Ifenthaler, D., & Schumacher, C. (2016), Student perceptions of privacy principles for learning analytics. Educational Technology Research and Development, 64(5), pp. 923-938.
- 16. Landers, R. N. (2014), Developing a theory of gamified learning: Linking serious games and gamification of learning. Simulation & Gaming, 45(6), pp. 752-768.
- 17. Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019), Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, pp. 225-236.
- 18. Picciano, A. G. (2012), The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16(3), pp. 9-20.
- 19. Reich, J., (2023), Failure to Disrupt: Why Technology Alone Can't Transform Education, p. 156
- 20. Selwyn, N., (2016), Education and Technology: Key Issues and Debates, p. 45
- 21. Tondeur, J., van Braak, J., Sang, G., Voogt, J., Fisser, P., & Ottenbreit-Leftwich, A. (2012), Preparing pre-service teachers to integrate technology in education: A synthesis of qualitative evidence. Computers & Education, 59(1), pp. 134-144.
- 22. Turkanovic, M., Holbl, M., Kosic, K., Heričko, M., & Kamisalic, A. (2018). EduCTX: A blockchain-based higher education credit platform. IEEE Access, 6, pp. 5112-5127.
- 23. UNESCO, (2021), The Futures of Education: Learning to Become, p. 62

An international peer reviewed, refereed, open-access journal Impact Factor: 8.3 www.ijesh.com ISSN: 2250-3552

- 24. Warschauer, M., (2011), Learning in the Cloud: How (and Why) to Transform Schools with Digital Media, p. 28
- 25. Zeide, E. (2017), The promise of student data: Navigating privacy and learning analytics. Educause Review, 52(5), pp. 22-33.