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Abstract
This study presents an integrated production-inventory model that incorporates Weibull
deterioration and price discount considerations to optimize inventory strategies for perishable
goods. The model is developed under the assumptions of deterministic demand, continuous
replenishment, and the absence of shortages, while deterioration is governed by a three-parameter
Weibull distribution. A mathematical formulation based on differential equations is established to
represent inventory behavior during both production and non-production periods. The model
accounts for setup costs, holding costs, production costs, deterioration losses, and discount
incentives to derive a Total Variable Cost (TVC) function. Analytical methods are employed to
determine the optimal cycle time that minimizes overall cost. A numerical illustration using
realistic parameter values demonstrates the efficiency and applicability of the proposed model. In
addition, a comprehensive sensitivity analysis evaluates the impact of key parameters such as setup
cost, production rate, demand level, and deterioration rate on optimal inventory policies. The
findings highlight the practical relevance of the proposed framework for decision-making in
industries managing deteriorating products. The results provide valuable managerial insights to
improve cost efficiency, enhance production planning, and promote operational sustainability.
Keywords: Inventory management, Weibull deterioration, price discount, optimization model,
production planning, sensitivity analysis, perishable goods, total variable cost, inventory
dynamics, holding cost.
Introduction
The Production Inventory Model with Weibull Deterioration and Price Discount is a mathematical
framework used in inventory management to optimize production and inventory decisions for
items subject to deterioration, while also considering price discounts. This model is particularly
relevant for industries dealing with perishable goods or items prone to deterioration over time,
such as food products or certain types of chemicals. In this model, the key components include
demand, deterioration, production, inventory holding and ordering costs, as well as price discounts.
The demand for the product is typically assumed to follow a known pattern and deterioration is
often modeled using the Weibull distribution, which captures the probability distribution of the
time until an item deteriorates. The primary objective of the Production Inventory Model is to
determine the optimal production quantity and order quantity that minimize total inventory costs
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while meeting demand and accounting for deterioration and price discounts. This involves finding
the balance between production costs, inventory holding costs and ordering costs, while also
considering the impact of deteriorating inventory on customer satisfaction and potential revenue
losses.

Price discounts introduce an additional layer of complexity into the production-inventory model.
These discounts are typically offered either for purchasing in larger quantities or for placing orders
during specific periods. Integrating price discounts into the decision-making process requires
evaluating the trade-offs between the savings achieved through discounts and the potential increase
in costs associated with holding excess inventory or placing more frequent orders. To solve the
Production Inventory Model with Weibull Deterioration and Price Discount, various optimization
and computational techniques can be employed, including dynamic programming, numerical
analysis, and heuristic algorithms. These methods aim to identify the optimal production and
ordering policies that maximize profitability while minimizing total costs over a defined planning
horizon.

By applying this model, organizations can make data-driven decisions regarding production
scheduling, inventory replenishment, and pricing strategies. This allows businesses to manage
inventory more efficiently, reduce losses due to deterioration, and capitalize on price discount
opportunities to enhance profitability and competitive advantage. Overall, the Production
Inventory Model with Weibull Deterioration and Price Discount represents a valuable analytical
tool for industries where effective inventory management is critical to operational performance
and long-term business success.

ASSUMPTIONS AND NOTATIONS”

The following assumptions are considered in the development of the Production Inventory Model
with Weibull Deterioration and Price Discount:

Assumptions:

(i) The demand for the product is known, constant, and does not vary with time.

(ii) Shortages or stock-outs are not permitted.

(iii) The planning horizon is assumed to be infinite.

(iv) Each unit of the product, once produced, is immediately available to meet demand.

(v) Items that are not in perfect condition may be sold at a discounted price.

(vi) Repair or replacement of deteriorated items is not allowed.

Notations:

p:Production rate per unit time

d: Actual demand rate of the product per unit time, where d < p

A: Setup cost per production run
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Deterioration rate (unit/unit time), 6 = aB(t —y)** where 0<o<1 , p >1,0<y<1 where an is the scale
parameter, p is the shape parameter and y is the location parameter of the Waybill three parameter
deterioration.

H: “Constant inventory carrying cost per unit per unit time.

k Production cost per unit.

| Price discount per unit cost.

T Optimal cycle time.

T1: Production period.

T2 Time during which there is no production, i.e., T2=T-T1.”

IX(t): Inventory level for product during the production period, i.e. 0<t<T1

12{t): Inventory level of the product during the period when there is no production, i.e. T1<t<T
I(M): Maximum inventory level ofthe product.

TVC{T): Total cost/unit time.

MATHEMATICAL MODEL

At time t = 0, there are no items in stock. Production and supply both begin at the same time and
production stops when the highest stock level, 1(M), is reached at time t=Tx. During this time, the
inventory grew at a rate of p/d and it didn't break down. After time 7J, the units that have been
delivered start to break down and the supply goes on at the markdown rate. As long as interest in
the item stays the same, the number of items in stock will go down until there are none left, at
which point the production run will begin. So, the accompanying different conditions can be used
to deal with the item's stock level at time t over the range [0,T].

diy(t) /[dt=p—-d O0<t<TI...... 70

And

dix(t) / dt + 0l2(t) = -d..... TI<t<T

Where 0 = ap(t —y)** 0<o<1, p>1,0<y<1

The scale parameter is x and the shape parameter is y. The location parameter is y.
Here the boundary conditions are 11(0)= 12 (T2) =0

Using the boundary condition 11(0) = 0 solution of equation (1) is

1) =(p-dt....... 0<t<T1

Equation (71) is a linear differential equation.

Integrating Factor of equation (71) is

ef e®Bt-1F == gat-1F

using the integration factor from above, the answer to equation (71) is
L()e* V= [ _g eat=nF 4 ¢
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Since 0 a 1, we can ignore the terms in the exponential function's expansion that have to do

= L()e ™ = —df {1+ a(t —y)P}dt + ¢ _ _ _
s Iz(t)ea(t_)/)ﬁ _ g {t N a(t_y)ﬁ+1} e with the second and higher powers of a. This

B+1
givesus T.,

Now, going back to the first condition 12 (T2) = Oabove, we can find the answer we need for
equation (71) as

B
(e T2 = t+ == {(T, = )P = t—p)P*]

Since 0 <a <1, If we ignore the parts of the exponential function that have to do with the second
and higher powers of a, we get,

= 1(0) = dft ~a(t =)} |1~ t 4 57 (T =P = =P

=d[Tz—t+m{(T — )P — (6 —y)P*} - Tha(t — y)P + ta(t — y)P

[)) 1 y)ﬁ(TZ y)3+1 —(t— y)2,8+1}l

Since 0 < a <1, Leaving out the parts about the second and higher powers of an in the above, we
get,

L) =d|r, -+ m” =P = ey = )F
+at(t —y)P - 1(t—y)3+1] T, <t<T
.......... 73
The set up cost per unit time is
SC=ATucvrenen. 74

The Holding Cost is
1 T T,
HC = ?l h(t)I;(t)dt + h(t)lz(t)dtl
[, (™ 0
= HC = ? [h

h +1
(p — d)tdtl + —f [TZ t+ m (TZ )ﬁ

——(t—y)P* —aT,(t - )f*+at(t—y)ﬂ]dt

0

,B+1
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Integrating the above we get

_ 2 2 _N\B+2
HC = h(pz;ml + % [%2 B Z(ZELTi)()/;)u) 75
4 @opPtt | zacpft an(—y)ﬁ“]""" )
(B+1) (B+1)(B+2) (B+1)
Let's say what T1 and T2 mean in terms of T.
11(T2) = 12(0)
= (p—d) TL=d [T2 +-5 (T, — )P =2 (—0)F* = aTy ()P + at(=p)?+1 |
Since 0 a 1, we can ignore the terms in the above equation with a to get a good answer.
(p-d) T1=dT2
=T-T2/T2=d/p-d
=T/T2 =plp-d

=T2=(p-d) T/p=xT ,whereletx=p—-d/p
=T1=T-T2=dT/p

By plugging these numbers into equation (76), we get
HC = hdxT 2ahd(xT-y)P+2  hdax(xT-y)B+1
g (12T B 77
2ahd(-y)P*2  ndax(-y)P*1
(B+D)(B+2)T (B+1)

The cost of making something per unit of time is
PC =pkT1/T = pk dT /Tp = kd

Deterioration cost:

The difference between the most units in stock and the number of units used to meet demand is
the number of units that break during a cycle. So, the cost of breaking down per unit of time isgiven
as

DC=K/T [12(0) - f,* d dt
=kd/T[ (T, =P =22 ()P = aly (-1)F

When we use the values of T1 and T2 in terms of T, we get
- e —Y)BH1 & B+ _ —)B
DC= kd/T[z5 (KT = )P+t = 2 (=y)F*1 — axT(—y)F ]

Price discount;
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Price cuts are given as a percentage of the cost to make the units in the Period (0,T2)
=PD=KIT/,* d dt
= KIdT2 /T = kldxT/ T = Kkl dx

So, to figure out the average total cost per unit of time,
TVC(T) =PC+SC+ HC+ PD +DC

A hdxT 2ahd(xT —y)P*?  hdax(xT —y)P+?

gy A hT 2ahd (T - )Pt | hdax(<T — )
T2 B+DB+2T B+1)
N 2ahd (—y)P*? *_hdax(—y)3+1
B+D(B+2)T B+1

kd [a(xT —y)P*'  a(=y)P*

r{ B+1 B+1

hdxT 2ahd

2 (B+DB+2)T

— axT(—y)P| + kldx

{(T = y)P+2 — (—p)F*2}

A
= TVC(T) = kd + -+

hdax
—_ b+l _N\B+1
"B 1){("T P+ (—p)Fft)
kd
+ﬁ{(x71 B y)ﬁ+1 - (_y)ﬁ+1} — akdx(—y)ﬁ + kldx

To find the lowest total cost, we figure out how much T is from
d
—(TVC(T)) =0
= (TVC(T))

s -A N hdx  2ahdx(xT — y)B+H N 2ahd(xT — y)P+2
T? 2 B+1T B+ 1D(B+2)T?
2ahd (—y)P+? akdx(xT —y)P
B+ DB +2)T? T
T—1)B+1 _\B+1
“"‘zg‘ﬂ)?z “"(‘;ily))ﬂ S\ 81
Using the calculated value of T from (14) will make the TVC as small as possible.

+ ahdx?(xT — y)# +
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d
23 (TVE(T) > 0

————[Tx(B + 1)(xT — y)? — (xT — y)P*?]

24 2ahdx
T T3 (Bt T2
2ahd
TBTDE+OT
akd
+ahdx3B(xT — )P~ + =2
akd
B+ 1T*
......... 82NUMERICAL EXAMPLE:

Z[T2x(B + 2)(xT — y)P** — 2(xT — y)P*2T] +

[T2x(8 + DT — )P — 2T (T — y)P*] -

4ahd(—y)P+?

B+1D(B+2)T?

2 [TxBGT = )Pt = (T — p)F]

2akd(—y)P+?
(B +1)T3

>0

Let » = Rs 2000/set up, p = 200 units/unit time, d = 50 unit/unit time,or = 0.6,= 10,y =0.4,A:
=/1s60/unit, | = 0.05,h = 2. The conditions in (9), (13), (14) and (15) are very hard to understand.
You can solve them by writing code in Mathematica-5.1. Using these qualities for condition 14,

we

getT* = 1.83327. Using this value of T*in equation (15) we get d?/dt? (TVC(T))= 4638 >0
which is positive. So, this value of T* will make the total average variable cost as low as possible.
Again, equations 9 and 13 tell us that the best values for HC* are 71.4766 and TVC* is 4342.31.
SENSITIVITY ANALYSIS
A sensitivity analysis has been done by changing one system parameter at a time while leaving the
others the same. The above example was used to get the original values of all the parameters for
sensitivity analysis.
Table-1 for sensitivity analysis

Parameter % change T HC* TVC*
-50 1.74542 66.7206 3784.86
-40 1.76837 67.8705 3898.68
-30 1.7878.4 67.898 4011.14
-20 1.80478 69.8197 4122.47
-10 1.81978 70.6758 4232.82
0 1.83327 11.476- 4342.31
10 1.845533 72.2321 4451.04
20 1.85677 72.95 4559.07
30 1.86715 73.6362 4666.48

A 40 1.87681 74.2963 4773.32
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50 1.88584 74.9333 4879.13
-50 2.74378 71.2062 4059.29
-40 2.35407 71.3571 4160.37
-30 2.13724 71.4766 4236.18
-20 1.99913 71.5737 4295.14
-10 1.90346 71.6548 4342.31
0 1.83327 71.7226 4380.9
10 1.77958 71.7808 4413.06
20 1.73719 71.8308 4440.28
30 1.70286 70.35.21 4463.6
40 1.6745 70.7416 4483.82
50 1..65067 70 .0096 3192.19
-50 1.64963 65.1875 3483.95
-40 1.671676 71.4766 3772.58
-30 1.70909 77.7166 4058.58
-20 1.74608 83.9111 4342.31
-10 1.78748 90.0611 4624..02
0 1.83327 96.1697 4903.91
10 1.8835'5 102.236 4518.2|
20 1.9J854 70.35.21 4545.768
30 1.99853 70.7416 3917.76
40 2.06395 70 .0096 4483.82
50 2.13528 70 .0096 3192.19
-50 1.91922 73.494 4430.77
-40 1.8961 72.4787 4388.56
-30 1.87684 72.1252 4378.27
-20 1.8-:6037 71.855 4361.53
-10 1.846 71.6436 4351.75
0 1.83327 71.4766 4342.31
10 1.8.2186 71.3411 4335.05
20 1.81153 71.228 4328.68
30 1.80209 78.3901 438856
40 1.791342 71.6436 4378.27

Volume 15 Issue 03 (July-September 2025)

196


http://www.ijesh.com/

International Journal of Engineering,
Science and Humanities

An international peer reviewed, refereed, open access journal

Impact Factor: 8.3 www.ijesh.com [SSN: 2250 3552

50 1.7854 71.4766 4361.53
-50 1.8146 74.7235 4294.47
-40 1.82191 73.8507 4306.9
-30 1.8251.2 73.1233 43175
-20 1.82116 72.56 4326.74
-10 1.830816 71.9579 4334.94
0 1.83327 71.476 4342.11
10 1.83541 71.0451 4349.01
20 1.83731 70.6544 4355.15
30 1.8146 70.2971 4360.81
40 1.82191 69.9691 4366.08
50 1.8251.2 69.6656 4370.99
-50 1.83327 62..8562 4527.97
-40 t.88229 64.5606 4486.CU
-30 1.93141 66.27561 4446.69
-20 1.98062 68.0004 4409..78
-10 2.02991 69.7341 4375.06
0 2.0793 71.4766 4342.031
10 1.82191 73.2268. 4311.31
20 1.8251.2 74.9846 4428.77
30 1.82116 76.7485 4253.27
40 1.830816 78.5169- 4225.2
50 1.98062 80.289 4196.7
-50 1.91385 77.0455 2740.91
-40 1.89259 75.4228 3063.71
-30 1.87462 74.1448 3138.92
-20 1.859091 73.1014 3704.92
-10 1.84544 72.2264 4023.99
0 1.83327 71.4766 434.2.31
10 1.8223I 70.8237 4660.01
20 1.81234 70.2469 4977.19
30 1.8032 69.7314 5293.93
40 1.79478 69.2672 5610.3
50 1.78696 68.8446 5926.33
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The data presented represent a sensitivity analysis of key parameters within an inventory
management model. Each entry corresponds to a percentage variation in a specific parameter,
along with the resulting changes in the optimal order quantity, holding cost, and total variable cost.
Parameter A demonstrates a consistent trend: as its value decreases, the optimal order quantity also
declines, whereas holding costs and total variable costs rise. Conversely, an increase in parameter
A leads to a higher optimal order quantity and a corresponding reduction in holding and total
variable costs. A similar relationship is observed for parameter P, where decreasing values are
associated with reduced optimal order quantities and elevated holding and total variable costs,
while increasing values have the opposite effect—enhancing order quantities and reducing overall
costs. Subsequent sensitivity analyses conducted for parameters d, o, B, v, and k reveal a
comparable pattern. Decreases in these parameter values generally result in lower optimal order
quantities and higher cost components, whereas increases lead to greater order quantities
accompanied by cost reductions. Overall, this sensitivity analysis provides meaningful insights
into how variations in model parameters influence inventory performance and cost efficiency. By
understanding these interdependencies, businesses can fine-tune their production and inventory
control strategies to optimize operational performance, cost-effectiveness, and profitability in
dynamic and competitive market conditions.

Conclusion

The present study develops and analyzes a comprehensive Production Inventory Model that
integrates Weibull deterioration and price discount mechanisms, offering an effective decision-
support tool for managing perishable inventories. By incorporating deterioration effects through a
flexible three-parameter Weibull distribution, the model realistically represents time-dependent
declines in product quality. The inclusion of price discounting reflects practical business
conditions, providing a realistic basis for optimizing order quantities and minimizing total costs.
The mathematical framework, established through differential equations and boundary conditions,
determines optimal production cycle time, inventory levels, and total variable costs. The numerical
illustration validates the model’s capability to minimize overall costs by identifying the optimal
cycle time. Sensitivity analysis further enhances the study by revealing how variations in
parameters such as production rate, demand rate, setup cost, deterioration rate, and discount rate
affect optimal decisions. The results highlight the model’s flexibility and robustness under
dynamic operational environments. This model offers a valuable framework for industries dealing
with deteriorating inventories, including food processing, pharmaceuticals, and chemical
manufacturing. It provides a cost-effective strategy for balancing production, holding, and
procurement decisions, ultimately improving operational efficiency, reducing wastage, and
enhancing profitability. Future research can extend this model by incorporating stochastic demand,
multi-item systems, partial backordering, and varying discount structures. Such extensions would
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further enhance the model’s applicability and provide deeper insights into sustainable and adaptive
inventory management practices in real-world business settings.
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