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Abstract 

This study presents an integrated production-inventory model that incorporates Weibull 

deterioration and price discount considerations to optimize inventory strategies for perishable 

goods. The model is developed under the assumptions of deterministic demand, continuous 

replenishment, and the absence of shortages, while deterioration is governed by a three-parameter 

Weibull distribution. A mathematical formulation based on differential equations is established to 

represent inventory behavior during both production and non-production periods. The model 

accounts for setup costs, holding costs, production costs, deterioration losses, and discount 

incentives to derive a Total Variable Cost (TVC) function. Analytical methods are employed to 

determine the optimal cycle time that minimizes overall cost. A numerical illustration using 

realistic parameter values demonstrates the efficiency and applicability of the proposed model. In 

addition, a comprehensive sensitivity analysis evaluates the impact of key parameters such as setup 

cost, production rate, demand level, and deterioration rate on optimal inventory policies. The 

findings highlight the practical relevance of the proposed framework for decision-making in 

industries managing deteriorating products. The results provide valuable managerial insights to 

improve cost efficiency, enhance production planning, and promote operational sustainability. 

Keywords: Inventory management, Weibull deterioration, price discount, optimization model, 

production planning, sensitivity analysis, perishable goods, total variable cost, inventory 

dynamics, holding cost. 

Introduction 

The Production Inventory Model with Weibull Deterioration and Price Discount is a mathematical 

framework used in inventory management to optimize production and inventory decisions for 

items subject to deterioration, while also considering price discounts. This model is particularly 

relevant for industries dealing with perishable goods or items prone to deterioration over time, 

such as food products or certain types of chemicals. In this model, the key components include 

demand, deterioration, production, inventory holding and ordering costs, as well as price discounts. 

The demand for the product is typically assumed to follow a known pattern and deterioration is 

often modeled using the Weibull distribution, which captures the probability distribution of the 

time until an item deteriorates. The primary objective of the Production Inventory Model is to 

determine the optimal production quantity and order quantity that minimize total inventory costs 
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while meeting demand and accounting for deterioration and price discounts. This involves finding 

the balance between production costs, inventory holding costs and ordering costs, while also 

considering the impact of deteriorating inventory on customer satisfaction and potential revenue 

losses. 

Price discounts introduce an additional layer of complexity into the production-inventory model. 

These discounts are typically offered either for purchasing in larger quantities or for placing orders 

during specific periods. Integrating price discounts into the decision-making process requires 

evaluating the trade-offs between the savings achieved through discounts and the potential increase 

in costs associated with holding excess inventory or placing more frequent orders. To solve the 

Production Inventory Model with Weibull Deterioration and Price Discount, various optimization 

and computational techniques can be employed, including dynamic programming, numerical 

analysis, and heuristic algorithms. These methods aim to identify the optimal production and 

ordering policies that maximize profitability while minimizing total costs over a defined planning 

horizon. 

By applying this model, organizations can make data-driven decisions regarding production 

scheduling, inventory replenishment, and pricing strategies. This allows businesses to manage 

inventory more efficiently, reduce losses due to deterioration, and capitalize on price discount 

opportunities to enhance profitability and competitive advantage. Overall, the Production 

Inventory Model with Weibull Deterioration and Price Discount represents a valuable analytical 

tool for industries where effective inventory management is critical to operational performance 

and long-term business success. 

ASSUMPTIONS AND NOTATIONS” 

The following assumptions are considered in the development of the Production Inventory Model 

with Weibull Deterioration and Price Discount: 

Assumptions: 

(i) The demand for the product is known, constant, and does not vary with time. 

(ii) Shortages or stock-outs are not permitted. 

(iii) The planning horizon is assumed to be infinite. 

(iv) Each unit of the product, once produced, is immediately available to meet demand. 

(v) Items that are not in perfect condition may be sold at a discounted price. 

(vi) Repair or replacement of deteriorated items is not allowed. 

Notations: 

p:Production rate per unit time 

d: Actual demand rate of the product per unit time, where d < p 

A: Setup cost per production run 
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Deterioration rate (unit/unit time), θ = αβ(t –γ)β-1  where 0<α<1 , β >1,0< γ<1 where an is the scale 

parameter, p is the shape parameter and y is the location parameter of the Waybill three parameter 

deterioration. 

H: “Constant inventory carrying cost per unit per unit time. 

k Production cost per unit. 

l Price discount per unit cost. 

T Optimal cycle time. 

T1: Production period. 

T2 Time during which there is no production, i.e., T2=T-T1.” 

Ix(t): Inventory level for product during the production period, i.e. 0≤ t≤T1 

I2{t): Inventory level of the product during the period when there is no production, i.e. T1≤t≤T 

I(M): Maximum inventory level ofthe product. 

TVC{T): Total cost/unit time. 

MATHEMATICAL MODEL 

At time t = 0, there are no items in stock. Production and supply both begin at the same time and 

production stops when the highest stock level, 1(M), is reached at time t=Tx. During this time, the 

inventory grew at a rate of p/d and it didn't break down. After time 7J, the units that have been 

delivered start to break down and the supply goes on at the markdown rate. As long as interest in 

the item stays the same, the number of items in stock will go down until there are none left, at 

which point the production run will begin. So, the accompanying different conditions can be used 

to deal with the item's stock level at time t over the range [0,T]. 

dI1(t) /dt = p – d   0≤ t≤T1……70 

And 

dI2(t) / dt + θI2(t) = -d…..T1≤t≤T 

…………..71 

Where θ = αβ(t –γ)β-1  0<α<1 , β >1,0< γ<1 

The scale parameter is x and the shape parameter is y. The location parameter is y. 

Here the boundary conditions are  I1(0)= I2 (T2) = 0 

Using the boundary condition I1(0) = 0 solution of equation (1) is 

I1(t) = (p – d) t…….0≤t≤T1 

………….72 

Equation (71) is a linear differential equation. 

Integrating Factor of equation (71) is 

 e∫ 𝑒𝛼𝛽(𝑡−𝛾)𝛽−1
== 𝑒𝛼(𝑡−𝛾)𝛽

 

using the integration factor from above, the answer to equation (71) is 

𝐼2(𝑡)𝑒𝛼(𝑡−𝛾)𝛽
= ∫ −𝑑 𝑒𝛼(𝑡−𝛾)𝛽

 + c 
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Since 0 a 1, we can ignore the terms in the exponential function's expansion that have to do 

⇒ 𝐼2(𝑡)𝑒𝛼(𝑡−𝛾)𝛽
= −𝑑∫ {1 + 𝛼(𝑡 − 𝛾)𝛽}𝑑𝑡 + 𝑐

⇒ 𝐼2(𝑡)𝑒𝛼(𝑡−𝛾)𝛽
= −𝑑 {𝑡 +

𝛼(𝑡−𝛾)𝛽+1

𝛽+1
} + 𝑐

with the second and higher powers of a. This 

gives us T., 

Now, going back to the first condition I2 (T2) = 0above, we can find the answer we need for 

equation (71) as 

𝐼2(𝑡)𝑒𝛼(𝑡−𝛾)𝛽
[T2 − t +

α

β+1
{(𝑇2 − 𝛾)𝛽+1 −   𝑡 − 𝛾)𝛽+1] 

 

Since 0 < a < 1, If we ignore the parts of the exponential function that have to do with the second 

and higher powers of a, we get, 

⇒ 𝐼2(𝑡) = 𝑑{1 − 𝛼(𝑡 − 𝛾)𝛽} [𝑇2 − 𝑡 +
𝛼

𝛽 + 1
{(𝑇2 − 𝛾)𝛽+1 − (𝑡 − 𝛾)𝛽+1}]

= 𝑑 [𝑇2 − 𝑡 +
𝛼

𝛽 + 1
{(𝑇2 − 𝛾)𝛽+1 − (𝑡 − 𝛾)𝛽+1} − 𝑇2𝛼(𝑡 − 𝛾)𝛽 + 𝑡𝛼(𝑡 − 𝛾)𝛽

−
𝛼2

𝛽 + 1
{(𝑡 − 𝛾)𝛽(𝑇2 − 𝛾)𝛽+1 − (𝑡 − 𝛾)2𝛽+1}]

 

 

Since 0 < a < 1, Leaving out the parts about the second and higher powers of an in the above, we 

get, 

𝐼2(𝑡) = 𝑑 [𝑇2 − 𝑡 +
𝛼

𝛽 + 1
(𝑇2 − 𝛾)𝛽+1 − 𝛼𝑇2(𝑡 − 𝛾)𝛽

+𝛼𝑡(𝑡 − 𝛾)𝛽 −
𝛼

𝛽 + 1
(𝑡 − 𝛾)𝛽+1] , 𝑇1 ≤ 𝑡 ≤ 𝑇

 

……….73 

The set up cost per unit time is 

SC= A/T…………74 

The Holding Cost is 

𝐻𝐶 =
1

𝑇
[∫  

𝑇1

0

ℎ(𝑡)𝐼1(𝑡)𝑑𝑡 + ∫  
𝑇2

0

ℎ(𝑡)𝐼2(𝑡)𝑑𝑡] 

⇒ 𝐻𝐶 =
1

𝑇
[ℎ ∫  

𝑇1

0

(𝑝 − 𝑑)𝑡𝑑𝑡] +
ℎ𝑑

𝑇
∫  

𝑇2

0

[𝑇2 − 𝑡 +
𝛼

𝛽 + 1
(𝑇2 − 𝛾)𝛽+1

−
𝛼

𝛽 + 1
(𝑡 − 𝛾)𝛽+1 − 𝛼𝑇2(𝑡 − 𝛾)𝛽 + 𝛼𝑡(𝑡 − 𝛾)𝛽] 𝑑𝑡
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Integrating the above we get 

𝐻𝐶 =
ℎ(𝑝−𝑑)𝑇1

2

2𝑇
+

ℎ𝑑

𝑇
[

𝑇2
2

2
−

2𝛼(𝑇2−𝛾)𝛽+2

(𝛽+1)(𝛽+2)

+
𝛼𝑇2(𝑇2−𝛾)𝛽+1

(𝛽+1)
+

2𝛼(−𝛾)𝛽+2

(𝛽+1)(𝛽+2)
+

𝛼𝑇2(−𝛾)𝛽+1

(𝛽+1)
]
……..75 

Let's say what T1 and T2 mean in terms of T.  

I1(T1) = I2(0) 

= (p – d) T1 = d [T2 +
𝛼

𝛽+1
(𝑇2 − 𝛾)𝛽+1 −

𝛼

𝛽+1
(−𝛾)𝛽+1 − 𝛼𝑇2(−𝛾)𝛽 + 𝛼𝑡(−𝛾)2𝛽+1] 

Since 0 a 1, we can ignore the terms in the above equation with a to get a good answer. 

(p- d) T1 = dT2 

= T – T2/T2 = d / p-d 

= T/T2 =p/p-d 

= T2 = (p- d) T /p = xT   , wherelet x = p – d /p 

= T1 = T – T2 =dT /p 

……………76 

By plugging these numbers into equation (76), we get 

𝐻𝐶 =
ℎ𝑑𝑥𝑇

2
−

2𝛼ℎ𝑑(𝑥𝑇−𝛾)𝛽+2

(𝛽+1)(𝛽+2)𝑇
+

ℎ𝑑𝛼𝑥(𝑥𝑇−𝛾)𝛽+1

(𝛽+1)

+
2𝛼ℎ𝑑(−𝛾)𝛽+2

(𝛽+1)(𝛽+2)𝑇
+

ℎ𝑑𝛼𝑥(−𝛾)𝛽+1

(𝛽+1)

………….77 

 

The cost of making something per unit of time is 

PC =pkT1/T = pk dT /Tp = kd 

……….78 

Deterioration cost: 

The difference between the most units in stock and the number of units used to meet demand is 

the number of units that break during a cycle. So, the cost of breaking down per unit of time isgiven 

as 

DC=k/T [I2(0) -  ∫  
𝑇2

0
d dt 

= kd/T[
𝛼

𝛽+1
(𝑇2 − 𝛾)𝛽+1 −

𝛼

𝛽+1
(−𝛾)𝛽+1 − 𝛼𝑇2(−𝛾)𝛽] 

 

When we use the values of T1 and T2 in terms of T, we get 

DC= kd/T[
𝛼

𝛽+1
(xT − 𝛾)𝛽+1 −

𝛼

𝛽+1
(−𝛾)𝛽+1 − 𝛼𝑥𝑇(−𝛾)𝛽] 

………….79 

Price discount: 
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Price cuts are given as a percentage of the cost to make the units in the Period (0,T2) 

= PD= Kl/T∫  
𝑇2

0
d dt 

=  kldT2 /T  =  kldxT/ T =  kl dx 

…………..80 

So, to figure out the average total cost per unit of time, 

𝑇𝑉𝐶(𝑇) = 𝑃𝐶 + 𝑆𝐶 + 𝐻𝐶 + 𝑃𝐷 + 𝐷𝐶

= 𝑘𝑑 +
𝐴

𝑇
+

ℎ𝑑𝑥𝑇

2
−

2𝛼ℎ𝑑(𝑥𝑇 − 𝛾)𝛽+2

(𝛽 + 1)(𝛽 + 2)𝑇
+

ℎ𝑑𝛼𝑥(𝑥𝑇 − 𝛾)𝛽+1

(𝛽 + 1)

+
2𝛼ℎ𝑑(−𝛾)𝛽+2

(𝛽 + 1)(𝛽 + 2)𝑇
+

ℎ𝑑𝛼𝑥(−𝛾)𝛽+1

(𝛽 + 1)

+
𝑘𝑑

𝑇
[
𝛼(𝑥𝑇 − 𝛾)𝛽+1

(𝛽 + 1)
−

𝛼(−𝛾)𝛽+1

(𝛽 + 1)
− 𝛼𝑥𝑇(−𝛾)𝛽] + 𝑘𝑙𝑑𝑥

⇒ 𝑇𝑉𝐶(𝑇) = 𝑘𝑑 +
𝐴

𝑇
+

ℎ𝑑𝑥𝑇

2
−

2𝛼ℎ𝑑

(𝛽 + 1)(𝛽 + 2)𝑇
{(𝑥𝑇 − 𝛾)𝛽+2 − (−𝛾)𝛽+2}

+
ℎ𝑑𝛼𝑥

(𝛽 + 1)
{(𝑥𝑇 − 𝛾)𝛽+1 + (−𝛾)𝛽+1}

+
𝑘𝑑𝛼

(𝛽 + 1)𝑇
{(𝑥𝑇 − 𝛾)𝛽+1 − (−𝛾)𝛽+1} − 𝛼𝑘𝑑𝑥(−𝛾)𝛽 + 𝑘𝑙𝑑𝑥

 

To find the lowest total cost, we figure out how much T is from 

𝑑

𝑑𝑇
(𝑇𝑉𝐶(𝑇)) = 0

⇒
−𝐴

𝑇2
+

ℎ𝑑𝑥

2
−

2𝛼ℎ𝑑𝑥(𝑥𝑇 − 𝛾)𝛽+1

(𝛽 + 1)𝑇
+

2𝛼ℎ𝑑(𝑥𝑇 − 𝛾)𝛽+2

(𝛽 + 1)(𝛽 + 2)𝑇2

−
2𝛼ℎ𝑑(−𝛾)𝛽+2

(𝛽 + 1)(𝛽 + 2)𝑇2
+ 𝛼ℎ𝑑𝑥2(𝑥𝑇 − 𝛾)𝛽 +

𝛼𝑘𝑑𝑥(𝑥𝑇 − 𝛾)𝛽

𝑇

 

𝛼𝑘𝑑(𝑥𝑇−𝛾)𝛽+1

(𝛽+1)𝑇2 +
𝛼𝑘𝑑(−𝛾)𝛽+1

(𝛽+1)𝑇2 = 0…………81 

Using the calculated value of T from (14) will make the TVC as small as possible. 
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𝑑2

𝑑𝑇2
(𝑇𝑉𝐶(𝑇)) > 0

⇒
2𝐴

𝑇3
−

2𝛼ℎ𝑑𝑥

(𝛽 + 1)𝑇2
[𝑇𝑥(𝛽 + 1)(𝑥𝑇 − 𝛾)𝛽 − (𝑥𝑇 − 𝛾)𝛽+1]

+
2𝛼ℎ𝑑

(𝛽 + 1)(𝛽 + 2)𝑇4
[𝑇2𝑥(𝛽 + 2)(𝑥𝑇 − 𝛾)𝛽+1 − 2(𝑥𝑇 − 𝛾)𝛽+2𝑇] +

4𝛼ℎ𝑑(−𝛾)𝛽+2

(𝛽 + 1)(𝛽 + 2)𝑇3

+𝛼ℎ𝑑𝑥3𝛽(𝑥𝑇 − 𝛾)𝛽−1 +
𝛼𝑘𝑑𝑥

𝑇2
[𝑇𝑥𝛽(𝑥𝑇 − 𝛾)𝛽−1 − (𝑥𝑇 − 𝛾)𝛽]

−
𝛼𝑘𝑑

(𝛽 + 1)𝑇4
[𝑇2𝑥(𝛽 + 1)(𝑥𝑇 − 𝛾)𝛽 − 2𝑇(𝑥𝑇 − 𝛾)𝛽+1] −

2𝛼𝑘𝑑(−𝛾)𝛽+1

(𝛽 + 1)𝑇3
> 0

 

………82NUMERICAL EXAMPLE: 

Let ^ = Rs 2000/set up, p = 200 units/unit time, d = 50 unit/unit time,or = 0.6,= 10,y =0.4,A: 

=/ls60/unit, l = 0.05,h = 2. The conditions in (9), (13), (14) and (15) are very hard to understand. 

You can solve them by writing code in Mathematica-5.1. Using these qualities for condition 14, 

we 

getT* = 1.83327. Using this value of T*in equation (15) we get d2/dt2 (TVC(T))=  4638 >0 

 which is positive. So, this value of T* will make the total average variable cost as low as possible. 

Again, equations 9 and 13 tell us that the best values for HC* are 71.4766 and TVC* is 4342.31. 

SENSITIVITY ANALYSIS 

A sensitivity analysis has been done by changing one system parameter at a time while leaving the 

others the same. The above example was used to get the original values of all the parameters for 

sensitivity analysis. 

Table-1 for sensitivity analysis 

Parameter % change T* HC* TVC* 

A 

-50 1.74542 66.7206 3784.86 

-40 I.76837 67.8705 3898.68 

-30 1.7878.4 67.898 4011.14 

-20 1.80478 69.8197 4122.47 

-10 1.81978 70.6758 4232.82 

0 1.83327 11.476· 4342.31 

10 l.845533 72.2321 4451.04 

20 1.85677 72.95 4559.07 

30 1.86715 73.6362 4666.48 

40 1.87681 74.2963 4773.32 
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50 1.88584 74.9333 4879.13 

P 

-50 2.74378 71.2062 4059.29 

-40 2.35407 7l.3571 4160.37 

-30 2.13724 71.4766 4236.18 

-20 1.99913 71.5737 4295.14 

-10 1.90346 71.6548 4342.31 

0 1.83327 71.7226 4380.9 

10 1.77958 71.7808 44l3.06 

20 1.73719 71.8308 4440.28 

30 1.70286 70.35.21 4463.6 

40 1.6745 70.7416 4483.82 

50 1..65067 70 .0096 3192.19 

d 

-50 1.64963 65.1875 3483.95 

-40 1.671676 71.4766 3772.58 

-30 l.70909 77.7166 4058.58 

-20 1.74608 83.9111 4342.31 

-10 1.78748 90.0611 4624..02 

0 1.83327 96.1697 4903.91 

10 1.8835'5 102.236 4518.2l 

20 l.9J854 70.35.21 4545.768 

30 l.99853 70.7416 3917.76 

40 2.06395 70 .0096 4483.82 

50 2.13528 70 .0096 3192.19 

α 

-50 1.91922 73.494 4430.77 

-40 1.8961 72.4787 4388.56 

-30 l.87684 72.1252 4378.27 

-20 l.8·6037 71.855 4361.53 

-10 1.846 71.6436 4351.75 

0 1.83327 71.4766 4342.31 

10 1.8.2186 71.3411 4335.05 

20 1.81153 71.228 4328.68 

30 1.80209 78.3901 438856 

40 1.791342 71.6436 4378.27 
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50 1.7854 71.4766 4361.53 

β 

-50 1.8146 74.7235 4294.47 

-40 1.82191 73.8507 4306.9 

-30 1.8251.2 73.1233 4317.5 

-20 1.821l6 72.56 4326.74 

-10 1.830816 71.9579 4334.94 

0 l.83327 71.476 4342.11 

10 1.83541 71.0451 4349.01 

20 1.83731 70.6544 4355.15 

30 1.8146 70.2971 4360.81 

40 1.82191 69.9691 4366.08 

  50 1.8251.2 69.6656 4370.99 

γ 

-50 1.83327 62..8562 4527.97 

-40 t.88229 64.5606 4486.CU 

-30 1.93141 66.27561 4446.69 

-20 1.98062 68.0004 4409..78 

-10 2.02991 69.7341 4375.06 

0 2.0793 71.4766 4342.031 

10 1.82191 73.2268. 4311.31 

20 1.8251.2 74.9846 4428.77 

30 1.821l6 76.7485 4253.27 

40 1.830816 78.5169· 4225.2 

50 1.98062 80.289 4196.7 

k 

-50 1.91385 77.0455 2740.91 

-40 1.89259 75.4228 3063.71 

-30 1.87462 74.1448 3138.92 

-20 1.859091 73.1014 3704.92 

-10 1.84544 72.2264 4023.99 

0 l.83327 71.4766 434.2.31 

10 1.8223l 70.8237 4660.01 

20 1.81234 70.2469 4977.19 

30 1.8032 69.7314 5293.93 

40 l.79478 69.2672 5610.3 

  50 l.78696 68.8446 5926.33 
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The data presented represent a sensitivity analysis of key parameters within an inventory 

management model. Each entry corresponds to a percentage variation in a specific parameter, 

along with the resulting changes in the optimal order quantity, holding cost, and total variable cost. 

Parameter A demonstrates a consistent trend: as its value decreases, the optimal order quantity also 

declines, whereas holding costs and total variable costs rise. Conversely, an increase in parameter 

A leads to a higher optimal order quantity and a corresponding reduction in holding and total 

variable costs. A similar relationship is observed for parameter P, where decreasing values are 

associated with reduced optimal order quantities and elevated holding and total variable costs, 

while increasing values have the opposite effect—enhancing order quantities and reducing overall 

costs. Subsequent sensitivity analyses conducted for parameters d, α, β, γ, and k reveal a 

comparable pattern. Decreases in these parameter values generally result in lower optimal order 

quantities and higher cost components, whereas increases lead to greater order quantities 

accompanied by cost reductions. Overall, this sensitivity analysis provides meaningful insights 

into how variations in model parameters influence inventory performance and cost efficiency. By 

understanding these interdependencies, businesses can fine-tune their production and inventory 

control strategies to optimize operational performance, cost-effectiveness, and profitability in 

dynamic and competitive market conditions. 

Conclusion 

The present study develops and analyzes a comprehensive Production Inventory Model that 

integrates Weibull deterioration and price discount mechanisms, offering an effective decision-

support tool for managing perishable inventories. By incorporating deterioration effects through a 

flexible three-parameter Weibull distribution, the model realistically represents time-dependent 

declines in product quality. The inclusion of price discounting reflects practical business 

conditions, providing a realistic basis for optimizing order quantities and minimizing total costs. 

The mathematical framework, established through differential equations and boundary conditions, 

determines optimal production cycle time, inventory levels, and total variable costs. The numerical 

illustration validates the model’s capability to minimize overall costs by identifying the optimal 

cycle time. Sensitivity analysis further enhances the study by revealing how variations in 

parameters such as production rate, demand rate, setup cost, deterioration rate, and discount rate 

affect optimal decisions. The results highlight the model’s flexibility and robustness under 

dynamic operational environments. This model offers a valuable framework for industries dealing 

with deteriorating inventories, including food processing, pharmaceuticals, and chemical 

manufacturing. It provides a cost-effective strategy for balancing production, holding, and 

procurement decisions, ultimately improving operational efficiency, reducing wastage, and 

enhancing profitability. Future research can extend this model by incorporating stochastic demand, 

multi-item systems, partial backordering, and varying discount structures. Such extensions would 
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further enhance the model’s applicability and provide deeper insights into sustainable and adaptive 

inventory management practices in real-world business settings. 
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