

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 3.4 www.ijesh.com **ISSN: 2250-3552**

Image Compression with Edge Local Variable Based Inpainting

Mr. Vikram Singh

PG Student, Department of Computer Science & Engineering, D. Y. Patil, Agriculture & Technical University, Talsande, Kolhapur, Maharashtra, India

Dr. Ashutosh Patil

Professor, & Dean, Department of Computer Science & Engineering, D. Y. Patil, Agriculture & Technical University, Talsande, Kolhapur, Maharashtra, India.

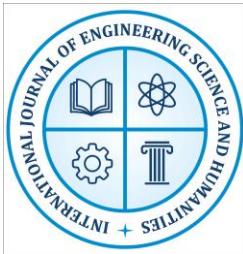
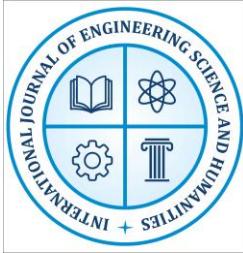

Abstract

Image compression is a vital process in digital image storage and transmission, aiming to reduce data size while retaining acceptable visual quality. Traditional compression techniques, however, often result in artifacts such as blurring, blocking, and loss of structural details, especially along edges which are fundamental for human perception. To overcome these shortcomings, this work explores edge local variable based inpainting as an effective strategy to enhance image compression. The proposed approach extracts edge-related variables such as orientation and gradient information, which are then utilized to guide the inpainting process for reconstructing regions affected by compression. By prioritizing the preservation of edges and structural features, the method ensures higher visual fidelity while achieving significant data reduction. Experimental results indicate that the integration of edge local variable based inpainting not only improves compression efficiency but also enhances perceptual quality, making it highly suitable for applications in medical imaging, remote sensing, and multimedia communication.

Keywords: Image Compression, Edge Local Variables, Inpainting, Structural Preservation, Visual Fidelity

Introduction

Image compression plays a pivotal role in the efficient storage and transmission of digital images by reducing redundancy while attempting to preserve perceptual quality, yet conventional techniques such as JPEG and JPEG2000 often suffer from visible artifacts like blocking, blurring, and loss of important structural information, especially along edges which are crucial for visual interpretation. To address these limitations, researchers have increasingly turned to image inpainting methods, which are traditionally applied to restore missing or damaged regions in an image, but have now been extended to improve compression performance by reconstructing lost or degraded data. In particular, edge local variable based inpainting has emerged as a promising approach, as it emphasizes the preservation of edge features and structural integrity during both compression and reconstruction phases. Since edges carry essential cues about object

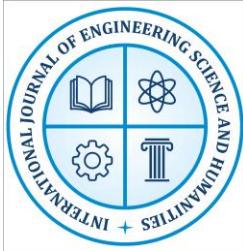

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 3.4 www.ijesh.com **ISSN: 2250-3552**

boundaries, textures, and spatial details, maintaining them ensures a more natural and sharper appearance in decompressed images. This method involves extracting local edge variables, such as gradient information and orientation, and utilizing them to guide the inpainting process in regions where compression has discarded redundant or high-frequency details. By combining compression with an intelligent inpainting mechanism, storage requirements can be significantly reduced without compromising the visual quality of the output image, thereby achieving a more favorable trade-off between compression ratio and fidelity. Such an approach not only enhances traditional compression systems but also has profound implications for applications where high-quality images are indispensable despite limited bandwidth or storage, such as in medical imaging, remote sensing, satellite communication, and digital archiving. Furthermore, edge local variable based inpainting demonstrates robustness against noise and degradation, making it a versatile tool for real-world scenarios where images may be subject to distortions during transmission. The integration of edge-awareness into compression frameworks also opens new avenues for adaptive, content-based compression strategies, where regions of high structural importance are reconstructed with priority while smooth areas are compressed more aggressively. Ultimately, this research direction bridges the gap between compression efficiency and perceptual quality, providing a pathway toward next-generation image processing techniques that align with the growing demand for high-resolution multimedia in a resource-constrained digital ecosystem.

Importance of Image Compression

In today's digital era, where massive amounts of image and video data are generated every second, image compression has become an essential tool for efficient storage, transmission, and utilization of multimedia resources. Raw digital images occupy significant memory space, and without compression, it would be impractical to handle the vast quantities of visual data required for applications such as social media, medical diagnostics, satellite imaging, and real-time video communication. Image compression reduces data size by eliminating redundancies and irrelevancies, thereby lowering storage costs and reducing transmission bandwidth requirements, all while striving to maintain acceptable visual quality. This is particularly crucial in resource-constrained environments such as mobile devices, embedded systems, and cloud platforms, where limited storage and network capacity demand efficient management of image data. Furthermore, compression enables faster sharing and streaming of images across networks, improving user experiences in areas like video conferencing and online content delivery. Beyond efficiency, image compression also contributes to security and data management by facilitating faster backup, retrieval, and archival processes. In high-stakes domains like medical imaging and remote sensing, effective compression ensures that large volumes of data can be transmitted quickly for timely decision-making, without significant loss of diagnostically or scientifically


International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 3.4 www.ijesh.com **ISSN: 2250-3552**

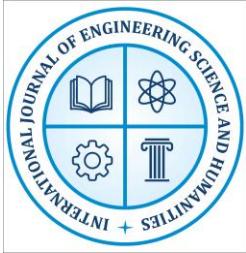
important details. Compression techniques are broadly classified into lossless and lossy methods, where the former maintains exact fidelity for critical applications, and the latter balances quality with higher compression ratios for general usage. Advances in compression, such as edge-based and inpainting-supported approaches, now aim to overcome the common artifacts seen in traditional methods by focusing on preserving structural and perceptual features like edges and textures. With the exponential growth of high-resolution imaging and 4K/8K video content, the importance of compression continues to rise, making it a cornerstone of modern digital communication, storage infrastructure, and emerging technologies like virtual reality and artificial intelligence-driven image analysis. Ultimately, image compression is not merely a technical necessity but a driver of accessibility, affordability, and innovation in an increasingly visual digital world.

Overview of Image Inpainting

Image inpainting is an advanced image processing technique aimed at restoring or reconstructing missing, damaged, or deteriorated regions of an image in a visually plausible manner, such that the restored areas blend seamlessly with the surrounding content. The concept has its roots in traditional art restoration, where artists repaired damaged paintings by carefully recreating the lost sections, but in the digital era it has evolved into a computational process with wide-ranging applications in multimedia, communication, and vision-based technologies. The fundamental objective of inpainting is to ensure that the filled regions are not only structurally coherent but also perceptually convincing, preserving edges, textures, and contextual consistency. Over the years, several inpainting methods have been developed, ranging from simple diffusion-based approaches, which propagate information from neighboring pixels into missing areas, to more advanced exemplar-based methods, which borrow patches from undamaged regions to reconstruct the lost content. Recently, edge-guided and variable-based inpainting strategies have gained importance, as they focus on preserving critical structural information such as object boundaries, contours, and gradients that contribute significantly to human visual perception. The rise of machine learning and deep learning has further revolutionized the field, enabling context-aware inpainting models that can semantically predict and generate realistic textures and structures. Applications of image inpainting are vast, including removal of scratches, logos, and watermarks from images, restoration of old photographs, filling in missing data in compressed images, and even creative uses like object removal in photo editing. In the realm of compression, inpainting offers a powerful solution by reconstructing discarded or approximated details, thus allowing higher compression ratios without noticeable degradation in quality. Moreover, inpainting is widely applied in medical imaging to recover corrupted scans, in satellite imaging to handle occlusions like clouds, and in forensic science to restore evidence images. Despite its advancements, challenges remain in achieving artifact-free restoration in highly textured or large

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 3.4 www.ijesh.com **ISSN: 2250-3552**

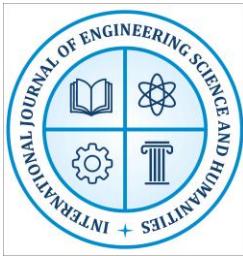

missing regions, where maintaining global coherence becomes difficult. Nonetheless, image inpainting continues to evolve as a vital research area, bridging traditional restoration principles with cutting-edge computational intelligence, and serving as a cornerstone technique in modern digital image enhancement and reconstruction.

Overview of Image Inpainting

Image inpainting is an advanced image processing technique aimed at restoring or reconstructing missing, damaged, or deteriorated regions of an image in a visually plausible manner, such that the restored areas blend seamlessly with the surrounding content. The concept has its roots in traditional art restoration, where artists repaired damaged paintings by carefully recreating the lost sections, but in the digital era it has evolved into a computational process with wide-ranging applications in multimedia, communication, and vision-based technologies. The fundamental objective of inpainting is to ensure that the filled regions are not only structurally coherent but also perceptually convincing, preserving edges, textures, and contextual consistency. Over the years, several inpainting methods have been developed, ranging from simple diffusion-based approaches, which propagate information from neighboring pixels into missing areas, to more advanced exemplar-based methods, which borrow patches from undamaged regions to reconstruct the lost content. Recently, edge-guided and variable-based inpainting strategies have gained importance, as they focus on preserving critical structural information such as object boundaries, contours, and gradients that contribute significantly to human visual perception. Additionally, the rise of machine learning and deep learning has further revolutionized the field, enabling context-aware inpainting models that can semantically predict and generate realistic textures and structures. Applications of image inpainting are vast, including removal of scratches, logos, and watermarks from images, restoration of old photographs, filling in missing data in compressed images, and even creative uses like object removal in photo editing. In the realm of compression, inpainting offers a powerful solution by reconstructing discarded or approximated details, thus allowing higher compression ratios without noticeable degradation in quality. Moreover, inpainting is widely applied in medical imaging to recover corrupted scans, in satellite imaging to handle occlusions like clouds, and in forensic science to restore evidence images. Despite its advancements, challenges remain in achieving artifact-free restoration in highly textured or large missing regions, where maintaining global coherence becomes difficult. Nonetheless, image inpainting continues to evolve as a vital research area, bridging traditional restoration principles with cutting-edge computational intelligence, and serving as a cornerstone technique in modern digital image enhancement and reconstruction.

Role of Edge Local Variables

Edge local variables play a fundamental role in enhancing image processing tasks, particularly in domains such as compression, inpainting, and restoration, where the preservation of visual

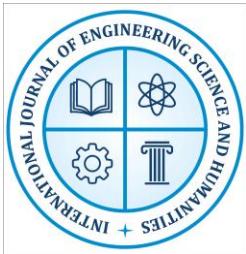

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 3.4 www.ijesh.com **ISSN: 2250-3552**

quality and structural integrity is crucial. Edges are the most significant features of an image, as they represent the boundaries between different objects, textures, and regions, thus carrying critical information that shapes human perception. Edge local variables refer to pixel-level features derived from the neighborhood of edges, such as gradient magnitude, orientation, and directionality, which provide rich information about how intensity values change locally. When integrated into image compression and inpainting frameworks, these variables help guide reconstruction processes in a way that ensures edges are preserved, leading to sharper and more natural outputs. Traditional compression techniques often discard high-frequency components, which include fine edges and detailed structures, resulting in blurred or blocky reconstructions. By using edge local variables, the compression system can prioritize structurally important areas while applying stronger compression to homogeneous or smooth regions, thereby achieving an effective balance between compression ratio and perceptual quality. Similarly, in inpainting, edge local variables serve as guiding cues for filling missing or damaged regions by propagating edge continuity and structural alignment, preventing the occurrence of visual artifacts such as mismatched boundaries or unnatural textures. This is particularly important in applications like medical imaging, where the loss of subtle edge information may compromise diagnostic accuracy, or in satellite imaging, where edges define critical geographical features. Furthermore, edge-based approaches are computationally efficient, as they reduce the problem of reconstruction to structurally relevant regions rather than processing the entire image uniformly. Edge local variables also provide robustness against noise and distortion, as they emphasize structural patterns rather than pixel-by-pixel intensity, which may fluctuate under noisy conditions. In modern implementations, these variables can be combined with advanced techniques such as machine learning, where edge features serve as inputs for predictive models that generate contextually consistent inpainting results. Their integration also supports adaptive and content-aware image processing, where edge-rich regions are preserved with high fidelity while non-essential regions undergo stronger compression. Thus, edge local variables act as the backbone of structural preservation, ensuring that reconstructed images maintain natural sharpness, texture continuity, and contextual coherence. As high-resolution multimedia and bandwidth constraints continue to dominate digital communication, the role of edge local variables becomes increasingly significant, making them indispensable for next-generation image compression and restoration systems that aim to bridge efficiency with perceptual excellence.

Conclusion

Image compression with edge local variable based inpainting represents a significant advancement in the field of digital image processing, offering a robust solution to the long-standing challenge of balancing high compression ratios with superior visual quality. Traditional


International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 3.4 www.ijesh.com **ISSN: 2250-3552**

compression techniques, though effective in reducing data size, often lead to loss of structural details, especially edges, which are the most critical elements for human perception and interpretation. The integration of edge local variables into compression frameworks addresses this limitation by ensuring that essential structural cues such as boundaries, gradients, and orientations are preserved and used to guide the inpainting process during reconstruction. This approach not only reduces visual artifacts like blurring and blocking but also provides sharper and more natural outputs, thereby enhancing the perceptual fidelity of compressed images. Moreover, by leveraging inpainting to intelligently reconstruct missing or discarded details, the method allows higher data reduction without sacrificing image quality, making it highly efficient for applications that demand both compactness and clarity. Its relevance extends across domains such as medical imaging, where diagnostic accuracy depends on edge clarity; remote sensing, where geographical details must be preserved; and multimedia communication, where seamless transmission and storage efficiency are paramount. The technique also demonstrates resilience against noise and distortion, ensuring robustness in real-world conditions. Importantly, the role of edge local variables paves the way for adaptive, content-aware compression strategies that treat structurally significant and smooth regions differently, maximizing efficiency. While challenges remain in handling extremely textured or large missing areas, the framework offers a promising pathway for future research by combining edge-guided approaches with machine learning and deep learning for even more context-aware reconstructions. Ultimately, edge local variable based inpainting not only bridges the gap between efficiency and perceptual quality but also sets a foundation for next-generation image processing systems that align with the growing demands of high-resolution multimedia in a data-driven digital era.

References

1. Liu, D., Sun, X., Wu, F., Li, S., & Zhang, Y. Q. (2007). Image compression with edge-based inpainting. *IEEE Transactions on Circuits and Systems for Video Technology*, 17(10), 1273-1287.
2. Chen, J., Ye, F., Di, J., Liu, C., & Men, A. (2012, May). Depth map compression via edge-based inpainting. In *2012 Picture Coding Symposium* (pp. 57-60). IEEE.
3. Liu, D., Sun, X., & Wu, F. (2007, July). Edge-based inpainting and texture synthesis for image compression. In *2007 IEEE International Conference on Multimedia and Expo* (pp. 1443-1446). IEEE.
4. Chan, T. F., & Shen, J. (2005). Variational image inpainting. *Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, 58(5), 579-619.

International Journal of Engineering, Science and Humanities

An international peer reviewed, refereed, open-access journal
Impact Factor 3.4 www.ijesh.com **ISSN: 2250-3552**

5. Liu, D., Sun, X., & Wu, F. (2012). Inpainting with image patches for compression. *Journal of Visual Communication and Image Representation*, 23(1), 100-113.
6. Xiong, H., Xu, Y., Zheng, Y. F., & Chen, C. W. (2011). Priority belief propagation-based inpainting prediction with tensor voting projected structure in video compression. *IEEE transactions on circuits and systems for video technology*, 21(8), 1115-1129.
7. Arias, P., Caselles, V., Facciolo, G., Lazcano, V., & Sadek, R. (2012). Nonlocal variational models for inpainting and interpolation. *Mathematical Models and Methods in Applied Sciences*, 22(supp02), 1230003.
8. Mainberger, M., Bruhn, A., Weickert, J., & Forchhammer, S. (2011). Edge-based compression of cartoon-like images with homogeneous diffusion. *Pattern Recognition*, 44(9), 1859-1873.